检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王凌谊 王志敏 钱纹 顾洁[2] 原吕泽芮 金之俭[2] WANG Lingyi;WANG Zhimin;QIAN Wen;GU Jie;YUAN Lüzerui;JIN Zhijian(Yunnan Power Grid Planning and Research Center,Kunming 650011,China;Department of Electrical Engineering,School of Electronic Information and Electrical Engineering,Shanghai JiaoTong University,Shanghai 200240,China)
机构地区:[1]云南电网有限责任公司电网规划建设研究中心,云南昆明650011 [2]上海交通大学电子信息与电气工程学院,大数据工程技术研究中心,上海200240
出 处:《供用电》2022年第3期69-74,共6页Distribution & Utilization
基 金:中国南方电网有限责任公司科技项目(059100KK52180010)。
摘 要:由于时间跨度大并受多种复杂因素影响,电力系统中长期负荷预测需要从大量数据中挖掘负荷特性及影响因素,实际应用中常常面临数据不足的问题。提出基于迁移学习的中长期负荷预测以降低样本不足对预测精度的影响,模型将源地区电力负荷及社会经济因素数据样本进行迁移以扩充目标地区数据集,通过隐变量描述不同源地区的特征,继而对目标地区和源地区建立集成模型进行预测。通过实际算例进行验证,所提出的模型能有效降低中长期负荷预测的误差。Due to long time span and various complex factors,it is necessary to unearth the load characteristics and influencing factors from massive data for medium and long-term load forecasting,while there is a lack of available data in practice.In view of this,this paper proposes a medium and long-term load forecasting model based on transfer learning to reduce the impact of sample shortage on accuracy.The proposed model migrates the load data and socio-economic data of the source area to expand the samples of the target area,describes the characteristics of different areas’databy hidden variable and then establishes an ensemble model to predict for the target area and the source areas.Experiments show that the proposed model can effectively reduce the prediction error of medium and long-term load forecasting.
关 键 词:迁移学习 中长期负荷预测 源地区 目标地区 隐变量 集成模型
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.184.166