检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王亚坤 傅志敏[1] 苏正洋 WANG Ya-kun;FU Zhi-min;SU Zheng-yang(College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;Nanjing Hydraulic Research Institute,Nanjing 210029,China)
机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]南京水利科学研究院,江苏南京210029
出 处:《水电能源科学》2022年第2期110-113,共4页Water Resources and Power
基 金:国家重点研发计划(2018YFC0407105);国家自然科学基金项目(51779154,51979176)。
摘 要:针对黄河小浪底水库高斜心墙堆石坝沉降预测精度低,无法准确反映大坝运行性态等问题,基于黄河小浪底水利枢纽主坝沉降监测数据,引入长短期记忆网络(LSTM)方法建立高斜心墙堆石坝沉降预测模型对主坝沉降进行预测,并对不同损失函数下模型优化过程进行分析,最终选定平均绝对误差作为损失函数。预测结果表明,LSTM方法各项指标结果均优于随机森林算法和BP神经网络算法,可实现高精度预测大坝运行性态,具有较高实用性,可为水库大坝沉降预测及工程运行管理提供借鉴和参考。To solve the problem that the settlement prediction accuracy of high inclined core rockfill dam is low and cannot reflect the exact operation behavior of the dam, LSTM was introduced to establish the settlement prediction model of high inclined core rockfill dam based on the settlement monitoring data of the main dam of Xiaolangdi Hydropower Project of the Yellow River. The optimization process of the model was analyzed for different loss function, and the mean absolute error was chosen as the loss function. The prediction results show that each index of the LSTM is better than stochastic forest algorithm and BP neural network algorithm, which realizes high-precision prediction of operation behavior of high-inclined core rockfill dam, has high practicability. Thus, it provides a guarantee for prediction of reservoir dam settlement and operation and management of the project.
分 类 号:TV641[水利工程—水利水电工程] TV698.11
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117