检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤健 侯慧娟[1] 陈洪岗 王劭菁 盛戈皞[1] 江秀臣[1] TANG Jian;HOU Huijuan;CHEN Honggang;WANG Shaojing;SHENG Gehao;JIANG Xiuchen(Department of Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;State Grid Shanghai Electric Power Research Institute,Shanghai 200437,China)
机构地区:[1]上海交通大学电气工程系,上海200240 [2]国网上海市电力公司电力科学研究院,上海200437
出 处:《电力自动化设备》2022年第3期196-202,217,共8页Electric Power Automation Equipment
基 金:上海交通大学新进青年教师启动计划基金资助项目。
摘 要:基于门控循环单元(GRU)构建双向多层门控循环单元,并引入编码器-解码器结构搭建Seq2Seq网络模型,通过优化神经元及神经网络结构提取时序数据依赖关系。同时引入注意力机制和Scheduled Sampling算法,自动获取与当前时刻预测输出显著相关的关键输入时间点,提高长时间预测的精度。变压器正常运行状态下的气体浓度预测算例结果表明,与基于简单GRU模型及简单Seq2Seq模型的方法相比,所提方法的预测误差更低且预测的发展趋势更符合真实值;变压器异常运行状态下的气体浓度预测算例结果表明,所提方法的平均相对误差和最大相对误差相比长短期记忆(LSTM)网络方法分别降低了0.73%和2.31%。Based on the GRU(Gate Recurrent Unit),the bidirectional multi-layer GRU is constructed.The encoder-decoder structure is introduced to build a Seq2Seq(Sequence to Sequence)network model.The time series data dependencies are obtained automatically by optimizing neurons and neural network structure.At the same time,the attention mechanism and the Scheduled Sampling algorithm are introduced to automatically obtain the key input time points significantly related to the prediction output at the current moment,so as to improve the accuracy of long-term prediction.In the case of gas concentration prediction under normal operating condition of transformer,compared with the methods based on simple GRU model and the simple Seq2Seq model,the proposed method has lower prediction error,and the prediction development trend is more in line with the true value.In the case of gas concentration prediction under abnormal operating condition of transformer,the average relative error and maximum relative error of the proposed model are respectively reduced by 0.73% and 2.31% compared with the LSTM(Long Short-Term Memory)network method.
关 键 词:电力变压器 油中溶解气体 门控循环单元 Seq2Seq 注意力机制 Scheduled Sampling算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.72.54