检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李杨 胡旭东[1] 彭来湖[1] 郑秋扬 LI Yang;HU Xudong;PENG Laihu;ZHENG Qiuyang(Key Laboratory of Modern Textile Machinery & Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China)
机构地区:[1]浙江理工大学浙江省现代纺织装备技术重点实验室,浙江杭州310018
出 处:《纺织学报》2022年第2期202-207,共6页Journal of Textile Research
基 金:浙江省博士后科研项目特别资助项目(ZJ2020004)。
摘 要:为获得任意载荷作用下轴向行进纱线任意点的横向位移参数,建立了轴向运动纱线在哈密顿体系下无量纲动力学微分方程。通过应用最小变分原理得到运动纱线的对偶方程,用分离变量法计算轴向运动纱线系统的各阶特征值和特征函数;基于线性辛特征值得到非奇异模态函数,推导出了模态函数的辛共轭正交归一关系;根据特征值及其分岔规律,分析纱线横向运动的稳定性,并利用非奇异模态函数分析纱线自由振动和受迫振动的位移响应;依据纱线横向振动的近似解,分析运动纱线在不同运行状态下的动力学行为。结果表明,纱线运动速度对响应周期、不同质点的响应幅值以及构形有较大影响,前2项构形经叠加即可求得纱线位移。In order to obtain the lateral displacement of an axially moving yarn at any point under arbitrary load,the dimensionless dynamic differential equation of the axially moving yarn in Hamilton system is established.The axial movement of the yarn system conjugate symplectic eigenvalue was solved using minimum yarn dual variational principle of motion equation together with the variable separation method.A nonsingular modal function was obtained using the linear characteristic eigenvalues,and a modal function of conjugate symplectic orthogonal to a relationship was deduced.According to the eigenvalues and the bifurcation,the stability of the lateral movement of yarns was studied.Based on the approximate solution of the nonlinear lateral vibration,the dynamic behavior of the yarn under various operating conditions were studied.The results show that the yarn speed have obvious effect on the response cycle,the response amplitude of the different points and the yarn configuration.The yarn displacement can be obtained by superposition of the first two configurations.
分 类 号:TH145.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33