检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪磊 李敬兆[1,2] 秦晓伟 WANG Lei;LI Jingzhao;QIN Xiaowei(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China;School of Computer Scinence and Engineering,Anhui University of Science and Technology,Huainan 232001,China)
机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232001 [2]安徽理工大学计算机科学与工程学院,安徽淮南232001
出 处:《煤炭技术》2022年第2期173-176,共4页Coal Technology
基 金:国家自然科学基金项目(51874010,61170060);北京理工大学高精尖机器人开放性研究项目(2018IRS16);物联网关键技术研究创新团队项目(201950ZX003)。
摘 要:滚动轴承作为煤矿旋转设备中至关重要的机械元件,对其早期故障进行快速有效的诊断与预测可保证矿山开采的稳定性。针对提升机等旋转设备滚动轴承,采用非接触式测量仪器采集轴承工作时的音频信号,通过预加重,分帧加窗及峭度计算提取声音信号的时域特征,并基于萤火虫算法优化的卷积-长短期记忆(CNN-LSTM)神经网络完成音频特征的输出预测。实验结果表明,设计的神经网络模型可对轴承音频的分帧峭度数据进行较为精确的预测拟合,在设定的峭度安全阈值下,该模型能实现滚动轴承早期故障的准确预知。Rolling bearings are crucial mechanical components in coal mining rotating equipment.A rapid and effective diagnosis and prediction of their early failure can ensure the stability of mining.Aiming at the rolling bearings of rotating equipment such as hoists,the audio signals of the bearings are collected by non-contact measuring instruments.Using pre-emphasis,frame-wise windowing and cliff calculation,the time-domain features of the audio signals are extracted.Then,a convolutional-long short-term memory(CNN-LSTM)neural network is optimised based on the firefly algorithm to complete the output prediction of the audio features.The experimental results show that the designed neural network model can make a more accurate prediction fit to the framed cragging data of bearing audio.Under the set safety threshold of cliffness,the model can achieve the accurate prediction of early failure of rolling bearings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222