脉冲噪声环境下的韧性多径时延估计算法  

Robust Multipath Time Delay Estimation Algorithm under Impulse Noise Environment

在线阅读下载全文

作  者:陈梦 行鸿彦[1] 王海峰[1] CHEN Meng;XING Hongyan;WANG Haifeng(Jiangsu Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China)

机构地区:[1]南京信息工程大学江苏省气象灾害预报预警与评估协同创新中心,江苏南京210044

出  处:《探测与控制学报》2022年第1期46-51,共6页Journal of Detection & Control

基  金:国家重点研发计划项目资助(2021YFE0105500);国家自然科学基金项目资助(62171228)。

摘  要:针对脉冲噪声环境下进行多径时延估计时,传统基于二阶统计量的算法性能退化,基于分数低阶统计量理论的算法对脉冲噪声先验知识依赖性过高的问题,提出基于Sigmoid变换和相关熵的韧性多径时延估计算法(SCWR)。该算法首先采用Sigmoid变换对多径传播的接收信号进行非线性预处理;再运用相关熵理论中的最大相关熵准则,结合参数估计理论中解决最小二乘优化问题的松弛搜索思想对多径时延参量进行估计。仿真结果表明,该算法估计性能要优于经典WRELAX(WR)算法和P-WR参考算法,并且较基于分数低阶统计量理论的P-WR算法,该算法中参数的选取对脉冲噪声先验知识的依赖性有所降低。Aiming at the problem that the performance of the traditional algorithm based on second-order statistics was degraded and the algorithm based on fractional low-order statistics theory was dependent on the prior knowledge of impulse noise too much when estimating multipath time delay in impulsive noise environment,a robust multipath time delay estimation algorithm(SCWR)based on Sigmoid transform and correlation entropy was proposed.Firstly,the method adopted the sigmoid function to preprocess the received signal of multipath propagation.Then,the Maximum correntropy criterion in correlation entropy theory was used to estimate the multipath delay parameters,combining with the relaxation search idea in parameter estimation theory to solve the least square optimization problem.The simulation results showed that the estimation performance of this algorithm was better than that of the classical WRELAX(WR)algorithm and P-WR reference algorithm,and compared with the P-WR algorithm based on fractional low-order statistics theory,the selection of parameters in this algorithm was less dependent on the prior knowledge of impulse noise.

关 键 词:多径时间延迟 Α稳定分布 最大相关熵准则 松弛搜索 SIGMOID函数 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象