检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:啜鹏杰 王清清[3] 柳培忠 陈建新 林晖平 黄富贵 CHUAI Pengjie;WANG Qingqing;LIU Peizhong;CHEN Jianxin;LIN Huiping;HUANG Fugui(Laboratory and Equipment Management Department,Quanzhou 362000,Fujian,China;Institute of Technology,Huaqiao University,Quanzhou 362000,Fujian,China;Security Department,Huaqiao University,Xiamen 361000,Fujian,China)
机构地区:[1]华侨大学实验室与设备管理处,福建泉州362000 [2]华侨大学工学院,福建泉州362000 [3]华侨大学保卫处,福建厦门361000
出 处:《实验室研究与探索》2022年第1期306-311,共6页Research and Exploration In Laboratory
摘 要:为减少高校实验室安全事故的发生和提高实验室安全风险评估的准确率,使用层次分析法(AHP)建立实验室安全风险评价体系,然后利用主成分分析法(PCA)对评价指标的综合权重进行降维,再将降维后的特征信息作为GA-BP神经网络的输入层,建立一种基于主成分分析(PCA)、遗传算法(GA)和人工神经网络(BP)相结合的实验室安全风险评价模型。实验结果表明,与BP神经网络、PCA-BP神经网络模型和GA-BP网络模型相比,PCA-GA-BP神经网络的评价精度和准确率更高、收敛速度更快、学习能力更强,可用于实验室安全风险评价。To reduce the occurrence of laboratory safety accidents in colleges and universities and improve the accuracy of laboratory safety risk assessment,this paper uses the analytic hierarchy process(AHP)to establish a laboratory safety risk assessment system.Then we use principal component analysis(PCA)to reduce the dimensionality of the comprehensive weight of the evaluation index,and finally,use the reduced dimensionality information as the input layer of the GA-BP neural network,and establish a combination of principal component analysis(PCA),genetic algorithm(GA),and artificial neural network(BP).The laboratory safety risk assessment model is completed.The verification results show that,compared with the BP neural network,the PCA-BP neural network model,and the GA-BP network model,the PCA-GA-BP neural network has a simpler structure,higher evaluation accuracy and faster convergence speed and stronger learning ability.There is no doubt that this model can be used for the safety risk assessment of university laboratories.
分 类 号:X931.0[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3