检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈红初 王安霞 CHEN Hong-chu;WANG An-xia(School of Electronics and Information Engineering,Hunan University of Science and Engineering,Yongzhou Hunan 425199,China;School of Artificial Intelligence and Computer,Jiangnan University,Jiangsu Wuxi 214122,China)
机构地区:[1]湖南科技学院电子与信息工程学院,湖南永州425199 [2]江南大学人工智能与计算机学院,江苏无锡214122
出 处:《计算机仿真》2021年第12期150-154,共5页Computer Simulation
基 金:2019年湖南省科研课题“永州瑶族织锦数字化生存与发展研究”(19C0824)。
摘 要:为了快速理解图像信息,提高可视化识别分类效果,提出视差估计下VR图像几何特征数字化提取。将图像几何特征分为面积、周长、质心与延伸方向等类型,利用视差估计法获取图像相邻块间相似尺度,设定阈值,选取最佳参考视点;根据参考视点,引入高斯卷积核确定空间内核,构建尺度空间,保留图像边缘信息;定义候选点,初步划分关键点区间,针对候选点空间函数值,通过阈值比较,过滤出对比度较低的点,建立关键点集合;利用离散Gabor小波变换方法,得出Gabor变换系统数均值和方差,组成几何特征向量;结合最大能量值实现所有特征空间的向量排序,完成几何特征数字化提取。仿真结果表明,上述方法可利用较少的特征点准确提取出几何特征,更有利于图像识别分类。For quickly grasping the image information and improving the classification effect of visualrecognition, this paper puts forward the digital extraction of geometric features of VR image based on disparity estima-tion. The geometric features of the image were divided into area, perimeter, centroid and extension direction. The dis-parity estimation method was used to obtain the similarity scale between adjacent blocks of the image, thus setting thethreshold and select the best reference view. Gaussian convolution kernel was introduced to determine the spatial ker-nel and construct the scale space via selecting the reference viewpoint, retaining the image edge information. Candi-date points were defined to divide the interval of key points. According to the results of threshold comparison, thepoints with low contrast were filtered out, and the set of key points was also established. Discrete Gabor wavelet trans-form was applied to obtain the mean and variance of the number of Gabor transform systems to form geometric eigen-vectors. The maximum energy value was adopted to realize the vector ordering of all feature spaces. Finally, the ex-traction of geometric features was achieved. The simulation results show that this method is more conducive to imagerecognition and classification, because it can use less feature points to extract geometric features accurately.
分 类 号:TP326[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.215.45