检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈勋 蒋艳群 陈琦[2] 张旭 胡迎港 Chen Xun;Jiang Yanqun;Chen Qi;Zhang Xu;Hu Yinggang(Model and Algorithm Research Institute,Department of Mathematics,Southwest University of Science and Technology,Mianyang 621000,China;China Aerodynamics Research and Development Center,Mianyang 621000,China)
机构地区:[1]西南科技大学理学院,模型与算法研究所,绵阳621010 [2]中国空气动力研究与发展中心,绵阳621000
出 处:《数值计算与计算机应用》2022年第1期76-87,共12页Journal on Numerical Methods and Computer Applications
基 金:国家数值风洞工程项目(NNW2018-ZT4A08);国家自然科学基金项目(11872323)资助。
摘 要:Burgers方程为Navier-Stokes方程组的简化形式,在计算数学和计算流体力学领域中有着广泛应用.本文设计了粘性Burgers方程的高阶精度半隐式加权紧致非线性格式(WCNS),并给出了稳定性分析.方程对流项和粘性项分别采用五阶精度WCNS格式和四阶中心差分格式计算.半离散系统采用三阶精度IMEX Runge-Kutta方法计算,对流项和粘性项分别进行显式和隐式处理.数值结果表明IMEX Runge-Kutta WCNS格式可达到三阶时间精度和五阶空间精度,比显式TVD Runge-Kutta WCNS格式计算效率高,且具有高分辨率的激波捕捉能力.Burgers'equations are a simplified form of incompressible Navier-Stokes equations and have been widely used in computational mathematics and computational fluid dynamics.This paper designs a high-order semi-implicit weighted compact nonlinear scheme(WCNS)for viscous Burgers'equations and gives the stability analysis of the designed scheme.The fifth-order WCNS and the fourth-order central difference scheme are used for the spatial discretization of convective terms and viscous terms.The third-order IMEX Runge-Kutta scheme is used for the time discretization of the semi-discrete system and convective terms are treated explicitly,while viscosity terms are treated implicitly.Numerical results show that the IMEX Runge-Kutta WCNS can achieve third-order accuracy in time and fifth-order accuracy in space.This semi-implicit WCNS is better than the TVD Runge-Kutta WCNS in terms of computational efficiency and has high-resolution shock-capturing ability.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120