机构地区:[1]天津财经大学管科学院,天津300222 [2]天津财经大学理工学院,天津300222
出 处:《科学学与科学技术管理》2022年第1期87-106,共20页Science of Science and Management of S.& T.
摘 要:高新技术产业已成为我国经济持续增长的主动力,而其创新性、不确定性、外部性等特征决定了产业政策在其发展中扮演着重要角色。为进一步揭示高新技术产业政策的层级关联特征与演化趋势,以产业赋能高质量发展,利用文本挖掘技术对高新技术产业政策进行了基于政策关键词共现、政策主题与政策工具三个维度的层级关联挖掘,并采用可视化方法以更好地揭示政策动态演进规律。在收集了我国1991—2020年国家、省、市三个层级的6043份高新技术产业政策文本的基础上,利用共词分析、LDA主题建模与相似度计算三种技术分别进行挖掘,并对挖掘结果进行Gephi、LDAvis与ThemeRiver方法的可视化分析,得到如下结论:(1)政策关键词共现挖掘方法显示,结果中存在"递进演化性""层级滞后性""层级滞后演化性"等规律;(2)政策主题挖掘方法显示,结果中存在由中观到微观的产业、企业、技术、产品的演变发展脉络,"层级阶段关联性"特征较为明显;(3)政策工具挖掘方法显示,结果中存在明显的"环重、供中、需弱""层级滞后发展性""国强、地方弱波动性""重建工补法、轻金融"等特征。总结上述结果,可以得出:缩短产业政策时滞、加强政策协调性,完善政策内容、健全产业政策市场化机制与优化金融工具对促进高新技术产业发展具有重要涵义。The high-tech industry has become the main driving force of China’s sustained economic growth, and its characteristics of innovation, uncertainty, and externality determine that industrial policy plays an important role in its development. Clarifying the evolution characteristics and basic laws of policies and mastering the motivation and mechanism of policy changes are the basic requirements for improving China’s high-tech industrial policy system and realizing high-quality development of industries. The study of policy text is an important research content in science, economics,and public management. The technical methods of the study draw on the relevant methods of library science, information science, and other disciplines, and have the obvious characteristics of multidisciplinary cross-study. The co-occurrence analysis of policy keywords can summarize the key points of policy texts, the induction of policy themes can sort out the context of policy development, and the effective use of policy tools can scientifically guide the development of industries.The analysis of these three dimensions can comprehensively grasp the characteristics of policy changes. In order to further reveal the hierarchical correlation characteristics and evolution trend of high-tech industrial policies and empower high-quality development with industries, this paper uses text mining technology to conduct hierarchical association mining on 6043 high-tech industrial policy texts at the national, provincial, and municipal levels from 1991 to 2020 based on the three dimensions of co-occurrence of policy keywords, policy themes, and policy tools and uses Gephi, LDAvis,and ThemeRiver visualization methods to better reveal the dynamic evolution law of policies.The results show that:(1) Policy keywords exist in the laws of ’progressive evolution’, ’hierarchy lag’ and ’hierarchy lag evolution’, and there are common characteristics among different governments, such as high-tech enterprises, high-tech zone science and technology,
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...