一种基于LPP子空间的热工过程多模式聚类方法研究  被引量:1

A Multi-mode Clustering Method for Thermal Process based on Locality Preserving Projection Subspace

在线阅读下载全文

作  者:袁照威 司风琪[2] 孟磊 谷小兵 YUAN Zhao-wei;SI Feng-qi;MENG Lei;GU Xiao-bing(Datang Environment Industry Group Co.,Ltd.,Beijing,China,Post Code:100097;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,Southeast University,Nanjing,China,Post Code:210096)

机构地区:[1]大唐环境产业集团股份有限公司,北京100097 [2]东南大学能源热转换及其过程测控教育部重点实验室,江苏南京210096

出  处:《热能动力工程》2022年第2期100-106,共7页Journal of Engineering for Thermal Energy and Power

基  金:中国博士后科学基金(2020M680474)。

摘  要:针对热工多模态过程的模式识别和聚类问题,提出了一种基于局部保留投影(Local Preserving Projection,LPP)子空间的混合聚类方案。首先,将高维的多模式过程数据通过局部保留投影方法投射到低维子空间中,在剔除噪声、提高计算效率的同时保留局部结构;其次,在LPP子空间中,结合传统的分层和非分层聚类算法的优点,使用凝聚k-means算法,为多模式过程数据生成最佳的集成聚类解决方案。以某600 MW机组脱硫系统的多模式过程数据的识别与聚类过程为例,证明了该方法的有效性和实用性。Considering the pattern recognition and clustering problems of thermal multi-mode processes,a hybrid clustering scheme based on the local preserving projection(LPP)subspace was proposed.Firstly,the data for the high-dimensional multi-mode process is projected into the low-dimensional subspace through the LPP method,which eliminates the noise,improves computational efficiency and also retains the local structure.Secondly,combining the advantages of the traditional hierarchical and non-hierarchical clustering algorithms in the LPP subspace,the agglomerative k-means algorithm is used to generate the best clustering solution for multi-mode process data.Taking the recognition and clustering processes of a certain 600 MW unit desulfurization system with the data of multi-mode processes as an example,the effectiveness and practicability of this method are proved.

关 键 词:多模式过程 局部保留投影 K-MEANS 凝聚分层聚类 湿法脱硫 

分 类 号:TM621[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象