检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁玉雄 冯青松[1] 陆建飞[2] 杨舟 雷晓燕[1] LIANG Yuxiong;FENG Qingsong;LU Jianfei;YANG Zhou;LEI Xiaoyan(MOE Engineering Research Center for Railway Environment Vibration and Noise,East China Jiaotong University,Nanchang 330013,China;College of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]华东交通大学铁路环境振动与噪声教育部工程研究中心,南昌330013 [2]江苏大学土木工程与力学学院,江苏镇江212013
出 处:《振动与冲击》2022年第5期131-140,共10页Journal of Vibration and Shock
基 金:国家自然科学基金(52178423,52068029,51878277);江西省教育厅科技项目(GJJ190341);江西省主要学科学术和技术带头人培养计划(20194BCJ22008);江西省重点研发计划(20192BBE50008)。
摘 要:为从弹性波角度准确分析轨道结构的振动特性,采用传递矩阵法建立单层欧拉梁、单层铁木辛柯梁,双层欧拉梁、双层铁木辛柯梁四种轨道结构声子晶体理论分析模型,分析结果表明,不考虑阻尼影响时,单层欧拉梁模型与单层铁木辛柯梁模型在0~250 Hz内带隙位置无明显差异,在1 000 Hz以上时二者的带隙位置则显著不同;双层欧拉梁模型和双层铁木辛柯梁模型0~250 Hz内带隙位置有较大不同,而在250 Hz以上频段内的"带隙"位置基本相同,且与单层梁模型带隙位置有显著不同。考虑阻尼影响时,各模型均存在通带变为不完全带隙,以及禁带的频带宽度会有微小展宽的现象,禁带的中心位置受阻尼的影响可忽略不计。在低频(0~250 Hz)内的现场测试结果与理论分析结果基本吻合,因此建议采用声子晶体理论分析钢轨振动噪声控制时,250 Hz以上的中高频振动分析采用铁木辛柯梁模型更为准确,分析250 Hz以下低频振动时,无砟轨道可用单层欧拉梁模型或铁木辛柯梁模型,有砟轨道应采用双层铁木辛柯梁模型。Here, to correctly analyze vibration characteristics of track structure from the perspective of elastic wave, the phononic crystal theoretical analysis models of single-layer Euler beam, single-layer Timoshenko beam, double-layer Euler beam and double-layer Timoshenko beam were established by using the transfer matrix method. The analysis results showed that when not considering effects of damping, there is no obvious difference between band gap positions of single-layer Euler beam model and single-layer Timoshenko one within the range of 0-250 Hz, but they are significantly different within the range of larger than 1 000 Hz;band gap positions within the range of 0-250 Hz of double-layer Euler beam model and double-layer Timoshenko one are quite different, while their band gap positions within the range of larger than 250 Hz are basically the same, this phenomenon is significantly different from that of single-layer beam models;when considering effects of damping, there is a phenomenon of the passing band becoming an incomplete band gap and the band width of the forbidden band being slightly widened;effects of damping on the center position of the forbidden band can be ignored;the onsite testing results within low frequency range of 0-250 Hz are basically consistent with the theoretical analysis ones;therefore, when using the phononic crystal theory to analyze track vibration and noise control, Timoshenko beam model is more accurate for medium and high frequency vibration within the range of larger than 250 Hz;when analyzing low frequency vibration within the range of less than 250 Hz, single-layer Euler beam model or single-layer Timoshenko one can be used for ballastless track, double-layer Timoshenko beam model can be adopted for ballast track.
关 键 词:弹性波传播 带隙 声子晶体理论模型 有砟轨道 无砟轨道
分 类 号:U213[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.226.28.28