检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周蓉 赵天忠[1] 吴发云 ZHOU Rong;ZHAO Tian-zhong;WU Fa-yun(Beijing Forestry University,Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration,Beijing 100083,China;Academy of Forest Inventory and Planning of State Forestry Administration,Beijing 100714,China)
机构地区:[1]北京林业大学,国家林业草原林业智能信息处理工程技术研究中心,北京100083 [2]国家林业和草原局调查规划设计院,北京100714
出 处:《西北林学院学报》2022年第2期186-192,共7页Journal of Northwest Forestry University
基 金:国家林业和草原局2020年行业管理专项业务经费“陆地生态系统碳监测卫星‘星-机-地’综合实验”(2020-21-89)。
摘 要:以吉林省延边朝鲜族自治州汪清县的主要针叶纯林树种为研究对象,结合Landsat 8 OLI数据和地面调查数据,通过提取半径为15 m圆形样地林分尺度下的遥感特征变量实现对地上生物量的估算。首先提取128块样地内的34个遥感特征,其次采用随机森林特征重要性分析遥感特征的贡献率,再利用BP神经网络算法的2种训练算法、SVM支持向量机的3种核函数构建地上生物量模型,最后利用32个测试样本评价模型的估算精度。结果表明,BP神经网络的L-M训练算法和贝叶斯正则化训练算法的R^(2)分别为0.6029、0.6721,RMSE分别为5.0969、4.2637,MAE分别为4.1669、3.2118;SVM支持向量机的线性核函数、RBF核函数、多项式核函数的R^(2)分别为0.5858、0.5619、0.4877,RMSE分别为5.8594、5.6009、5.7637,MAE分别为4.24、3.89、4.176。以贝叶斯正则化训练算法构建地上生物量模型的估测精度最佳;BP神经网络算法比SVM向量机更适用于本研究;同一种机器学习算法不同的训练函数存在差异性。Taking the main pure coniferous forest species occurring in Wangqing County,Yanbian Korean Autonomous Prefecture of Jilin Province as the research objects,combining with Landsat 8 OLI data and ground survey data,the above ground biomass was estimated with remote sensing characteristic variables which were extracted from the radius of with the scale of 15 m round sample land stand.Firstly,34 remote sensing features in 128 sample plots were extracted.Secondly,the contribution rate of remote sensing features was analyzed by using the importance of random forest characteristics.Then,two training algorithms of BP neural network algorithm and three kernel functions of SVM support vector machine were used to construct the aboveground biomass model.Finally,32 test samples were used to evaluate the estimation accuracy of the model.The R^(2) values of L-M training algorithm and Bayesian regularization training algorithm of BP neural network were 0.6029 and 0.6721,respectively,the RMSE values were 5.0969 and 4.2637,respectively,and the MAE values were 4.1669 and 3.2118,respectively.The R^(2) values of linear kernel function,RBF kernel function and polynomial kernel function of SVM were 0.5858,0.5619 and 0.4877 respectively,RMSE values were 5.8594,5.6009 and 5.7637,respectively,and MAE values were 4.24,3.89 and 4.176,respectively.The estimation accuracy of aboveground biomass model constructed by Bayesian regularization training algorithm is the best;BP neural network algorithm is more suitable for this study than SVM;different training functions of the same machine learning algorithm are different.
关 键 词:地上生物量 BP神经网络 SVM支持向量机 遥感影像
分 类 号:S758[农业科学—森林经理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249