极化敏感面阵的DOA-极化参数降维估计算法  被引量:1

Joint Estimation of DOA and Polarization Parameters for Polarization Sensitive Array

在线阅读下载全文

作  者:刘淳熙 王文亮 彭冬亮[1] 陈志坤 吴美婵 LIU Chunxi;WANG Wenliang;PENG Dongliang;CHEN Zhikun;WU Meichan(School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China;CSSC(ZHE JIANG)Ocean Technology Co.,Ltd.,Zhoushan 316021,China)

机构地区:[1]杭州电子科技大学自动化学院,浙江杭州310018 [2]中船(浙江)海洋科技有限公司,浙江舟山316021

出  处:《无线电工程》2022年第3期384-390,共7页Radio Engineering

基  金:国家自然科学基金(61701148)。

摘  要:针对极化敏感面阵的极化域-空域联合谱估计,现有的多重信号分类(Multiple Signal Classification,MUSIC)算法需要进行四维谱峰搜索,计算量较大。建立了一种极化参数与空域参数分离的长矢量模型,在此基础上提出了一种基于不等式约束的降维MUSIC算法。利用极化矢量的模值有界性,将联合谱估计问题转化为不等式约束优化问题,在空间域进行谱峰搜索先行估计出信号的波达方向(Direction of Arrival,DOA),进而估计极化相位差和极化幅角。与4D-MUSIC算法相比,所提算法将四维搜索降低至二维,运算量显著降低。计算机仿真实验证明了算法的有效性和高精度性。For the problem of joint spectrum estimation in polarization domain and spatial domain for polarization sensitive array,the traditional Multiple Signal Classification(MUSIC)algorithm needs a four-dimensional peak search.The computation of the algorithm is large.A long vector model is established to separate the polarization parameters from the spatial parameters,and a reduced dimension MUSIC algorithm based on inequality constraints is proposed.By using the modulus boundedness of the polarization vector,the joint spectrum estimation problem is transformed into an inequality constrained optimization problem.The direction of arrival(DOA)of the signal is estimated firstly by searching the spectrum peak,and then the polarization phase difference and polarization angle are estimated.Compared with 4D-MUSIC algorithm,the proposed algorithm needs less computation and the four-dimensional research is reduced to two-dimensional.The computer simulation results show that the effectiveness and accuracy of the algorithm is high.

关 键 词:极化敏感面阵 波达方向估计 极化参数估计 降维MUSIC 不等式约束 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象