检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李豪杰 杨海清[1] LI Haojie;YANG Haiqing(School of information engineering,Zhejiang University of Technology,Hangzhou 310012,China)
出 处:《计算机测量与控制》2022年第3期156-160,共5页Computer Measurement &Control
基 金:浙江省自然科学基金(LY13F010008);浙江省科技计划项目(2015F50009)。
摘 要:为了提高对三维点云目标的识别精确度,提出一种基于深度卷积神经网络(CNN,convolutional neural network)的点云目标识别模型;针对已有的深度卷积点云目标识别网络无法有效提取点云局部拓扑特征的问题,采用迭代最远点采样(FPS,terative farthest point sampling)结合方向卷积编码方式来捕获局部形状特征;并引入空间变换网络(STN,spatial transform network)使点云数据能够自适应进行空间变换和对齐,以解决点云数据旋转性会造成目标识别结果不稳定的问题;实验结果表明:文中提出的点云目标识别方法有效提高了识别精度度,相较于PointNet在ModelNet40和ShapeNetCore两个数据集上分别提高1.2%和1.4%。In order to improve the accuracy of 3-D point cloud target recognition,a target recognition model for point cloud based on the Convolutional Neural Network(CNN) is proposed.Aiming at the problem that the existing deep convolutional point cloud target recognition network can not effectively extract the local topological features of point cloud,combined with directional convolutional coding,Iterative Farthest Point Sampling(FPS) is used to capture the local shape features.In view of the instability of target recognition results caused by the rotation of point cloud data,the introduction of Spatial Transform Network(STN) enables point cloud data to self-adaptively perform spatial transformation and alignment.The experimental results show that the point cloud target recognition method proposed in this paper effectively improves the recognition accuracy,which respectively increases by 1.2% and 1.4% compared with PointNet on ModelNet40 and ShapeNetCore data sets.
关 键 词:三维点云 目标识别 深度卷积神经网络 方向卷积编码 空间变换网络
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7