检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李中[1,2] 王星 卢春华 LI Zhong;WANG Xing;LU Chun-hua(Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China;Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China)
机构地区:[1]华北电力大学电子与通信工程系,保定071003 [2]华北电力大学河北省电力物联网技术重点实验室,保定071003
出 处:《科学技术与工程》2022年第8期3058-3065,共8页Science Technology and Engineering
摘 要:为降低滚动轴承在线监测和故障诊断过程中振动信号采集、传输、存储和处理负担,基于压缩感知理论和小波包分析技术,提出一种基于压缩感知和小波信息熵的滚动轴承特征提取方法,用于滚动轴承故障诊断。应用部分哈达玛(PartHadamard)矩阵采集振动信号实现压缩,通过小波包分解提取滚动轴承状态特征,计算其小波信息熵作为故障诊断特征。在标准数据集上进行振动信号特征提取,并采用4种分类方法完成故障诊断实验。结果表明:所提出的特征提取方法能够在较高的数据压缩率条件下,保持较高的故障诊断精度,适用于滚动轴承在线监测和故障诊断。In order to reduce the burden of vibration signal acquisition,transmission,storage and processing in the process of online monitoring and fault diagnosis of rolling bearings.Based on the theory of compressed sensing and wavelet packet analysis technology,a feature extraction method of rolling bearings based on compressed sensing and wavelet information entropy was proposed for fault diagnosis of rolling bearings.PartHadamard matrix was used to collect vibration signals to achieve compression,and the state features of rolling bearings were extracted through wavelet packet decomposition,and the wavelet information entropy was calculated as the fault diagnosis feature.The vibration signal feature extraction was performed on the standard data set,and four classification methods were used to complete the fault diagnosis experiment.The results show that the proposed feature extraction method can maintain a high fault diagnosis accuracy under the condition of a high data compression rate.It is suitable for online monitoring and fault diagnosis of rolling bearings.
关 键 词:压缩感知 小波信息熵 滚动轴承 特征提取 故障诊断
分 类 号:TH133[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112