检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴宗胜 韩改宁 李红 WU Zong-sheng;HAN Gai-ning;LI Hong(School of Computer Science,Xianyang Normal University,Xianyang 712000,China)
机构地区:[1]咸阳师范学院计算机学院,陕西咸阳712000
出 处:《计算机技术与发展》2022年第3期163-168,共6页Computer Technology and Development
基 金:国家自然科学基金项目(62073218);陕西省教育厅专项科研计划项目(20JK0969);咸阳师范学院科研基金项目(XSYK20025);陕西省教育科学“十三五”规划项目(SGH18H350,SGH18H373)。
摘 要:随着中国基础建设的不断推进,高速公路覆盖范围不断扩大,隧道数量也越来越多,公路隧道发生事故导致的后果与影响往往较大,是极具破坏性和危险性的。利用深度学习方法,该文设计了一个基于树莓派的智能公路隧道火灾监测报警系统。该系统采用树莓派开发板和Intel Movidius神经计算棒(neural compute stick,NCS)为硬件平台,连接视频监控摄像头、烟雾传感器、声光报警器和4G通信模块组成公路隧道火灾检测硬件系统,运用训练好的基于卷积神经网络(CNN)的隧道火灾图像识别模型,对隧道交通场景进行实时检测。系统通过监控摄像头和烟雾传感器,同时检测隧道现场交通情况,能够及早准确识别火灾的发生,并实现即时现场报警与远程报警。测试结果表明,在树莓派和神经计算棒的终端平台上运行深度学习的火灾检测算法,火灾识别精度达到96%,速度到达每秒5帧。应用该系统在发生隧道火灾时对避免人员伤亡、降低财产损失具有重要意义。With the continuous advancement of infrastructure construction in China,the coverage of the highway is expanding,and the number of tunnels is also increasing.The consequences and impact of highway tunnel accidents are often large,which are highly destructive and dangerous.By using deep learning method,an intelligent highway tunnel fire monitoring and alarm system based on raspberry pie is designed.This system uses raspberry pi and Intel Movidius neural compute stick(NCS)as the hardware platform,connects video surveillance camera,smoke sensor,sound and light alarm and 4G communication module to form the highway tunnel fire detection hardware system,and uses the trained tunnel fire image recognition model based on convolution neural network(CNN)to detect the tunnel traffic in real time.By monitoring cameras and smoke sensors,the system can detect the traffic condition of the tunnel at the same time,identify the occurrence of fire as soon as possible,and realize real-time on-site alarm and remote alarm.The test shows that the fire detection algorithm based on deep learning is run on the terminal platform of raspberry pi and NCS.The fire identification accuracy reaches 96%and the speed reaches 5 frames per second.The application of the system in the case of tunnel fire is of great significance to avoid casualties and reduce property losses.
关 键 词:隧道火灾 火灾检测 火灾报警 卷积神经网络 神经计算棒
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28