检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁美芳 杨毅[2] 赵彪[2] 文晓博 易三莉[1] YUAN Meifang;YANG Yi;ZHAO Biao;WEN Xiaobo;YI Sanli(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;Department of Radiation Oncology,Tumor Hospital of Yunnan Province,Kunming 650118)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500 [2]云南省肿瘤医院放射治疗科,昆明650118
出 处:《北京生物医学工程》2022年第1期42-48,共7页Beijing Biomedical Engineering
摘 要:目的基于深度学习方法提出一种稠残U-net神经网络,探讨其在放疗定位CT上自动预测甲状腺轮廓的可行性,以减少放疗中甲状腺所受辐射剂量,降低甲减发生率。方法在U-net网络中引入残差机制和稠密连接机制建立一种稠残U-net网络。选取76名患者定位CT图像的甲状腺切片制作数据集,随机划分为训练集58例、验证集9例和测试集9例,对稠残U-net进行训练、验证和测试,得到稠残U-net自动预测甲状腺的结果。通过戴斯相似性系数(Dice)、杰卡德相似系数(Jaccard)和豪斯多夫距离(HD)等评价指标来评估其分割性能。结果稠残U-net预测甲状腺的Dice值为0.86±0.09、Jaccard值为0.78±0.12、HD值为2.52±0.61,且预测的轮廓边界与专家勾画的标准边界非常接近。结论本文提出的稠残U-net能在定位CT图像上较为精准地预测甲状腺轮廓,且证明在卷积神经网络中引入残差机制和稠密连接机制能提高其分割性能。Objective Based on the deep learning method, a dense-residual U-net neural network is proposed to explore the feasibility of automatically predicting the contour of the thyroid on the CT images of radiotherapy positioning, so as to reduce the radiation dose to the thyroid during radiotherapy and reduce the incidence of hypothyroidism.Methods Residual mechanism and dense connection mechanism were introduced into U-net to establish dense-residual U-net neural network.The thyroid tissue structures of 76 patients were selected from localized CT images to make a data set, which were randomly divided into a training set of 58 patients, a verification set of 9 patients and a test set of 9 patients.The dense-residual U-net neural network was trained, verified and tested, and the thyroid contour predicted by neural network were obtained.The segment performance of dense-residual U-net were evaluated by dice, jaccard and HD.Results The thyroid’s dice was 0.86±0.09,the jaccard was 0.78±0.12,and the HD was 2.52±0.61 by dense-residual U-net, and the predicted contour boundary was very close to the standard drawn by experts.Conclusions The dense-residual U-net proposed in this study can accurately predict the thyroid contour on localized CT images, and it is proved that the residual mechanism and dense connection mechanism can improve performance of convolutional neural network in medical image segmentation.
关 键 词:卷积神经网络 残差块 稠密连接 甲状腺 CT图像
分 类 号:R318.04[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33