基于ResNet50对地震救援中人体姿态估计的研究  被引量:1

Research on human posture estimation in earthquake rescue based on ResNet50

在线阅读下载全文

作  者:邬春学[1] 贺欣欣 Wu Chunxue;He Xinxin(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《信息技术与网络安全》2022年第3期50-58,70,共10页Information Technology and Network Security

基  金:国家重点研发计划(2018YFC0810204)。

摘  要:调查发现,地震中死亡人数增加的原因主要是错过救援的黄金时间,因此可通过救援无人机自动对受灾人员进行行为识别与状态分析。人体姿态估计是指对图像中人体关节点和肢体进行检测的过程,在人机交互和行为识别应用中起着重要的作用,然而由于背景复杂、肢体被遮挡等因素导致标注人体关节点和肢体十分困难。因此提出一种结合ResNet50及CPM的模型,该模型通过获取图像特征和精调机制,计算出关节点依赖关系,最后划分到对应人体。实验表明,该模型与其他模型对比能够提高复杂场景下人体姿态估计的效果。It was found that,the main reason for such a high number of deaths lies in the missing of prime rescue time.So rescue UAV can be used to recognize the behaviors of affected population automatically and analyze their status.Human pose estimation refers to the process of detecting humans′joints and limbs in image,which plays a crucial role in human machine interaction and application of action recognition.However,due to the factors such as complex background and covering of limbs,it is very difficult to note the human joints and limbs in image.To address the issue,this paper proposed a model combining ResNet50 and convolutional pose machine(CPM).According to the model,image features are obtained by residual network and the dependence between joints is obtained by fine adjustment mechanism.Finally the key points aggregated are divided to the corresponding human body.Experiment shows that compared with other human pose estimation models,such model can enhance the effect of human post estimation under complex earthquake rescue scenario.

关 键 词:神经网络 人体姿态估计 ResNet50 亲和度向量场 地震救援 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象