检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:储汇 宋陈 汪晨灿 CHU Hui;SONG Chen;WANG Chencan(School of Mechanical Engineering,Anhui University of Science&Technology,Huainan 232001,China)
机构地区:[1]安徽理工大学机械工程学院,安徽淮南232001
出 处:《洛阳理工学院学报(自然科学版)》2022年第1期62-67,共6页Journal of Luoyang Institute of Science and Technology:Natural Science Edition
摘 要:人脸识别的训练预测模型是多样而复杂的,影响人脸识别准确率和稳定性的因素也很多。人脸识别的抗干扰设计是构建人脸识别模型不可忽视的重要内容。通过获取更高质量的人脸图像数据源,选择效果更好的人脸识别优化器以及部分超参数的调整,来提高对大量人脸数据进行处理的能力。利用卷积神经网络减少人工干预,提高特征提取的算法精度,从而提高多人脸识别的精度。There are many complicated face recognition training prediction models,with many factors influencing the accuracy and stability of face recognition.Anti-jamming technology research is essential to construct the face recognition models,which aim to get the quality data,selects face recognition optimizer and adjusts other parameters in order to improve the face data processing.Also,convolutional neural network is applied to reduce human intervention and improve the accuracy of feature extraction,realizing the multi-face recognition.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.172.197