基于混沌精英黏菌算法的无刷直流电机转速控制  被引量:16

Speed Control of Brushless Direct Current Motor Based on Chaotic Elite Slime Mould Algorithm

在线阅读下载全文

作  者:肖亚宁 孙雪[1] 李三平[1] 姚金言 XIAO Ya-ning;SUN Xue;LI San-ping;YAO Jin-yan(College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China)

机构地区:[1]东北林业大学机电工程学院,哈尔滨150040

出  处:《科学技术与工程》2021年第28期12130-12138,共9页Science Technology and Engineering

基  金:中央高校基本科研业务费专项资金(2572014BB06)。

摘  要:针对传统比例-积分-微分(proportional integral differential,PID)在无刷直流电机转速控制中存在响应速度慢、稳定性差等缺点,提出了一种基于混沌精英黏菌算法的自适应控制方法。首先,分析并建立了无刷直流电机数学模型。其次,为进一步提高标准黏菌算法的收敛速度和求解精度,采用Tent混沌映射丰富种群多样性,同时引入精英反向学习策略扩大搜索范围。最后,将上述改进算法应用于无刷直流电机的速度环PID参数自整定。通过在不同运行条件下进行MATLAB仿真以及实验,结果表明:对比传统PID以及模糊PID,所提方法能够使得控制精度得到显著提高,并且具有响应速度快,抗干扰能力强等优势。In order to address the shortcomings of traditional proportional integral differential(PID)in the speed control of brushless direct current(DC)motor,such as slow response and poor stability,an adaptive control method based on chaotic elite slime mould algorithm was proposed.Firstly,the mathematical model of brushless DC motor was analyzed and established.In addition,to further boost the convergence speed and solution precision of the standard slime mould algorithm,Tent chaotic mapping was introduced to enrich the population diversity,while the elite opposition-based learning strategy was developed to expand the search range.Finally,the modified algorithm was applied to self-tune the speed loop PID parameters of brushless DC motor.The results of simulations and experiments under different operating conditions demonstrate that the control accuracy can be significantly improved by the proposed method compared with traditional PID and fuzzy PID,which also has the advantages of fast response as well as strong anti-interference ability.

关 键 词:无刷直流电机 比例-积分-微分(PID)控制 黏菌算法 Tent混沌映射 精英反向学习 转速控制 

分 类 号:TM301.2[电气工程—电机] TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象