检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡勤伟 陶庆[1] 王妮妮 陈清正 吴腾辉 张小栋[2] HU Qinwei;TAO Qing;WANG Nini;CHEN Qingzheng;WU Tenghui;ZHANG Xiaodong(School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China;School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
机构地区:[1]新疆大学机械工程学院,乌鲁木齐830047 [2]西安交通大学机械工程学院,西安710049
出 处:《西安交通大学学报》2022年第4期185-193,202,共10页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(51865056);新疆维吾尔自治区区域协同创新专项(科技援疆计划)资助项目(2020E0259)。
摘 要:针对传统稳态视觉诱发电位(SSVEP)脑电信号目标识别方法分类精度低、提取特征不充分、方法复杂且耗时等问题,提出一种基于多尺度特征融合卷积神经网络的SSVEP信号分类识别方法(SSVEP-MF)。利用小波变换将多通道SSVEP信号整合转化为二维图像作为输入样本集;建立多尺度特征融合卷积神经网络模型(MFCNN),该模型利用三层二维卷积核实现图像样本不同尺度特征的充分提取,构建多尺度特征融合单元对不同层级特征进行融合,并通过全连接等操作完成模型的训练;将样本集输入到MFCNN模型中实现脑电信号特征自适应提取及端到端分类。所提SSVEP-MF方法能够充分提取信号各层级特征,实现短时间视觉刺激下SSVEP信号的有效识别,并具有较高的目标识别效率。实验结果表明,在1 s刺激时长时,相比传统功率谱密度分析方法、典型相关分析方法以及普通卷积结构方法,所提方法的识别准确率分别提升了18.57%、20.08%及7.03%,有效提高了基于稳态视觉诱发电位范式下脑机接口的信号识别性能。A multi-scale feature fusion convolutional neural network-based SSVEP signal classification and recognition method is proposed to solve the problems of low classification accuracy,inadequate feature extraction,complex and time-consuming methods of traditional steady-state visual evoked potential(SSVEP-MF)signal target recognition methods.Firstly,the wavelet transform is used to integrate the multi-channel SSVEP signals into two-dimensional images as the input sample set;secondly,a multi-scale feature fusion convolutional neural network model(MFCNN)is established,which uses a three-layer two-dimensional convolutional kernel to achieve sufficient extraction of features at different scales of image samples,constructs multi-scale feature fusion units to fuse features at different levels,and completes the training of the model through operations such as full connectivity;finally,the sample set is input to the MFCNN model to achieve adaptive extraction of EEG signal features and end-to-end classification.The proposed SSVEP-MF method can fully extract the features at each level of the signal,achieve effective recognition of SSVEP signals under short-time visual stimulation,and have high target recognition efficiency.The experimental results show that the recognition accuracy of the proposed method is improved by 18.57%,20.08%and 7.03%,respectively,compared with the traditional power spectral density analysis method,typical correlation analysis method and common convolutional structure method at 1 s stimulus duration,which effectively improves the signal recognition performance of brain-machine interface based on the steady-state visual evoked potential paradigm.
关 键 词:稳态视觉诱发电位 目标识别 多尺度特征融合 卷积神经网络 小波变换 脑机接口
分 类 号:TP23[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.144.80