基于自适应布谷鸟聚类搜索的推荐系统算法的研究  被引量:1

在线阅读下载全文

作  者:胡安明 

机构地区:[1]广州理工学院计算机科学与工程学院,广东广州510540

出  处:《电脑知识与技术》2022年第6期87-88,91,共3页Computer Knowledge and Technology

摘  要:推荐系统本质是一种信息检索技术,能根据用户喜好在海量数据中检索出合适数据推荐给用户,传统推荐系统一般使用协同过滤推荐算法,协同过滤推荐算法主要通过挖掘用户的历史行为数据进行推荐,但传统推荐算法存在着稀疏矩阵、冷启动、实时性等问题困扰[1];因此,本文提出一种基于自适应布谷鸟聚类搜索的改进推荐系统算法,首先对推荐数据进行聚类处理,然后利用布谷鸟算法较强的全局搜索能力,提升推荐系统的准确度,实验结果表明,引入自适应布谷鸟聚类搜索能对传统协同过滤算法在推荐精度、召回率等方面指标方面有一定提高,计算效果优于传统推荐算法。

关 键 词:布谷鸟搜索算法 推荐系统 聚类 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象