基于LDA的隐式标签协同过滤推荐算法  被引量:2

Implicit Tag Collaborative Filtering Recommendation Algorithm Based on LDA

在线阅读下载全文

作  者:文勇军[1,2] 何环晶 唐立军[1,2] WEN Yong-jun;HE Huan-jing;TANG Li-jun(School of Physical & Electric Science, Changsha University of Science & Technology, Changsha 410114, China;Hunan Province Higher Education Key Laboratory of Modeling and Monitoring on the Near-earth Electromagnetic Environments, Changsha 410114, China)

机构地区:[1]长沙理工大学物理与电子科学学院,湖南长沙410114 [2]长沙理工大学近地空间电磁环境监测与建模湖南省普通高校重点实验室,湖南长沙410114

出  处:《计算机与现代化》2022年第3期53-58,69,共7页Computer and Modernization

基  金:湖南省重点研发计划项目(2018GK2054);近地空间电磁环境监测与建模湖南省高校重点实验室开放基金资助项目(N201907)。

摘  要:固定标签协同过滤推荐算法,未充分考虑标签因子的多样化,主要依靠人工标记,扩展性不强,主观因素多。本文从用户的喜好特征因素角度出发,在固定标签协同过滤推荐算法的基础上,提出一种隐式标签协同过滤推荐算法。该算法利用LDA主题模型生成项目文本的隐式标签,得到项目-标签特征权重,根据算法性能优化的要求选择标签数量,将项目-标签矩阵与用户评分矩阵结合得到用户对标签的偏好矩阵,最后通过协同过滤算法产生推荐。实验结果表明,本文提出的基于LDA的隐式标签协同过滤推荐算法缓解了数据稀疏性问题,项目推荐的召回率、准确度和F1值有较大提升。The fixed tag collaborative filtering recommendation algorithm does not fully consider the diversity of tag factors,and mainly relies on manual tagging,which is not scalable and has many subjective factors.In this paper,based on the fixed tag collaborative filtering recommendation algorithm,an implicit tag collaborative filtering recommendation algorithm is proposed from the perspective of user preferences.This algorithm uses LDA topic model to generate implicit tags of item text,and obtains item-tag feature weights.The number of tags is selected according to the requirements of algorithm performance optimization,and the user’s preference matrix for tags is obtained by combining the item-tag matrix with the user scoring matrix.Finally,the recommendation is generated by collaborative filtering algorithm.The experimental results show that the user-based LDA tag collaborative filtering algorithm proposed in this paper alleviates the problem of data sparsity,and greatly improves the recall rate,accuracy and F1 value of item recommendation.

关 键 词:固定标签 协同过滤 LDA主题模型 隐式标签 算法改进 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象