检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张金辉[1] 芦方旭 米志超 王穆阳 ZHANG Jinhui;LU Fangxu;MI Zhichao;WANG Muyang(Logistic Support Center,PLA General Hospital,Beijing 100853,China;Unit 31121 of PLA,Nanjing Jiangsu 210042,China;College of Communications Engineering,Army Engineering University of PLA,Nanjing Jiangsu 210007,China)
机构地区:[1]解放军总医院服务保障中心,北京100853 [2]中国人民解放军31121部队,江苏南京210042 [3]陆军工程大学通信工程学院,江苏南京210007
出 处:《通信技术》2022年第3期305-311,共7页Communications Technology
摘 要:地面移动用户群使得传统的静态无人机覆盖算法无法取得较好的效果,因此在综合考虑无人机的覆盖性能与功耗性能的基础上,采用动态多无人机方法,提出了一种基于最大奖励函数值的在线学习覆盖算法。该算法在空间建模无人机的运动方向后,以无人机收到的最大奖励函数值为激励函数,在线学习选择下一步的运动方向,确定下一步的运动位置。仿真结果表明,该算法在实现移动无人机的覆盖和功耗性能指标上具有显著效果。Mobile user groups on the ground make the traditional static UAV coverage algorithm unable to achieve good results. Therefore, on the basis of comprehensively considering the coverage performance and power consumption performance of UAVs, through adopting a dynamic multi-UAV method, this paper proposes an online learning coverage algorithm based on the maximum reward function value. After modeling the movement direction of the UAV in space, the algorithm takes the maximum reward function value received by the UAV as the excitation function, and then learns online to select the next movement direction and determine the next movement position. Simulation results indicate that the algorithm has a significant effect in achieving the best coverage and power consumption performance of mobile UAVs.
分 类 号:TN929.52[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120