检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许仁杰[1] 刘宝弟[1] 张凯[1] 刘伟锋[1] XU Renjie;LIU Baodi;ZHANG Kai;LIU Weifeng(School of Oceanography and Spatial Information,China University of Petroleum(East China),Qingdao Shandong 266580,China)
机构地区:[1]中国石油大学(华东)海洋与空间信息学院,青岛266580
出 处:《计算机应用》2022年第3期708-712,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(61671480);中国石油天然气集团公司重大科技项目(ZD2019-183-008);模式识别国家实验室开放项目(202000009)。
摘 要:模型无关的元学习(MAML)是一种多任务的元学习算法,能使用不同的模型,并快速地在不同任务之间进行适应,但MAML在训练速度与准确率上还亟待提高。从高斯随机过程的角度出发对MAML的原理进行分析,提出一种基于贝叶斯权函数的模型无关元学习(BW-MAML)算法,该权函数利用贝叶斯分析设计并用于损失的加权。训练过程中,BW-MAML将每次抽样的任务视为遵循高斯分布,根据贝叶斯分析计算不同任务在分布中的概率,并根据任务在分布中的概率判断该任务重要程度,再以此赋以不同的权重,从而提高每次梯度下降中信息的利用率。在Omniglot与Mini-ImageNet数据集上的小样本图像学习实验结果表明,通过增加贝叶斯权函数,BW-MAML的训练效果在6任务训练2500步后,在Mini-ImageNet上的准确率比MAML的准确率最高提高了1.9个百分点,并且最终准确率比MAML平均提升了0.907个百分点;在Omniglot上的准确率也平均提升了0.199个百分点。As a multi-task meta learning algorithm,Model Agnostic Meta Learning(MAML)can use different models and adapt quickly to different tasks,but it still needs to be improved in terms of training speed and accuracy.The principle of MAML was analyzed from the perspective of Gaussian stochastic process,and a new Model Agnostic Meta Learning algorithm based on Bayesian Weight function(BW-MAML)was proposed,in which the weight was assigned by Bayesian analysis.In the training process of BW-MAML,each sampling task was regarded as following a Gaussian distribution,and the importance of the task was determined according to the probability of the task in the distribution,and then the weight was assigned according to the importance,thus improving the utilization of information in each gradient descent.The small sample image learning experimental results on Omniglot and Mini-ImageNet datasets show that by adding Bayesian weight function,for training effect of BW-MAML after 2500 step with 6 tasks,the accuracy of BW-MAML is at most 1.9 percentage points higher than that of MAML,and the final accuracy is 0.907 percentage points higher than that of MAML on MiniImageNet averagely;the accuracy of BW-MAML on Omniglot is also improved by up to 0.199 percentage points averagely.
关 键 词:贝叶斯分析 高斯随机过程 机器学习 元学习 小样本学习
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222