道路约束下多传感器协同地面目标跟踪的管理方法  被引量:2

Multi-sensor Cooperative Management for Ground Target Tracking under Road Constraints

在线阅读下载全文

作  者:张昀普 单甘霖 ZHANG Yunpu;SHAN Ganlin(Department of Electronic and Optical Engineering,Shijiazhuang Campus,Army Engineering University of PLA,Shijiazhuang 050003,Hebei,China)

机构地区:[1]陆军工程大学石家庄校区电子与光学工程系,河北石家庄050003

出  处:《兵工学报》2022年第3期542-555,共14页Acta Armamentarii

基  金:军内科研项目(LJ20191C020393)。

摘  要:为实现道路约束下地面目标的有效跟踪、控制传感器系统的辐射损失,提出一种多传感器协同管理方法。将传感器管理过程描述为部分可观马尔可夫决策过程,建立道路约束下目标跟踪模型和传感器截获损失模型,给出跟踪精度和截获损失的具体计算方法,并提出一种多普勒盲区下的目标预测状态修正方法;针对高维数下管理方案求取困难的问题,设计了一种莱维飞行-樽海鞘群算法以快速获得高质量的解。仿真实验结果表明:相比于经典寻优算法,所提算法具有更好的全局搜索能力,能够在缩短寻优时间的同时找到高质量的解;所提管理方法能够有效解决地面目标跟踪问题,既保证了跟踪任务的完成质量,又提高了传感器系统的生存能力。A multi-sensor cooperative management method is proposed to effectively track the ground target under road constraints and control the radiation loss of the sensor system.The sensor management process is described as a partially observable Markov decision process.A road-constrainted target tracking model and a sensor interception loss model are established,the calculation methods for tracking accuracy and interception loss are presented,and a correction method for target prediction state in Doppler blind zone is proposed.In order to solve the problem that a management scheme is difficultly got when the system state dimension is high,a Levy flight-salp swarm algorithm is designed to obtain a high-quality solution quickly.The simulated results show that the proposed algorithm has better global search capability,and can find high-quality solutions while shortening the optimization time compared with the classic optimization algorithms.The proposed management method can effectively solve the problem of ground target tracking,which not only guarantees the completion quality of the tracking task,but also improves the survivability of the sensor system.

关 键 词:传感器管理 地面目标跟踪 道路约束 多普勒盲区 樽海鞘群算法 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象