检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周博超 韩雨男 桂志国[1,2] 李郁峰[3] 张权[1,2] ZHOU Bochao;HAN Yunan;GUI Zhiguo;LI Yufeng;ZHANG Quan(National Key Laboratory for Electronic Measurement Technology,North University of China,Taiyuan 030051,China;Shanxi Province Key Laboratory for Biomedical Imaging and Big Data,North University of China,Taiyuan 030051,China;Institute for Civ-Mil Integration and Collaborative Innovation,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学电子测试技术国家重点实验室,太原030051 [2]中北大学生物医学成像与影像大数据山西省重点实验室,太原030051 [3]中北大学军民融合协同创新研究院,太原030051
出 处:《计算机工程》2022年第4期191-196,205,共7页Computer Engineering
基 金:国家自然科学基金(61671413,61801438);山西省自然科学基金(201901D111153);电子测试技术国家重点实验室开放基金(ZDSYSJ2015006);山西省应用基础研究计划项目(201901D111144);山西省青年科学基金(201801D221196);中北大学青年学术带头人项目(QX201801)。
摘 要:低剂量计算机断层扫描(LDCT)能够有效降低X射线辐射对人体健康造成的危害,已广泛应用于医学临床诊断。针对LDCT图像中存在大量的斑点噪声和条形伪影的问题,提出一种结合改进的VGG网络和深层字典的图像去噪算法,以弥补深层字典去噪能力的不足。在深层字典学习到第一层字典原子和稀疏矩阵后,通过改进的VGG网络将字典原子区分为信息原子和噪声原子,同时将稀疏矩阵中噪声原子所对应的元素设置为零,降低噪声原子对图像去噪效果的影响。实验结果表明,与K-SVD算法、正则化K-SVD算法和深层字典学习算法相比,该算法的峰值信噪比和结构相似性指数平均提高了1.4 dB和0.03,能够有效抑制LDCT图像噪声和伪影,且保留较多的边缘和细节信息。Low-Dose Computed Tomography(LDCT)can effectively reduce the harm caused by X-ray radiation to human health,and has been widely used in medical clinical diagnosis.Focusing on the problem of extensive speckle noise and strip artifacts in LDCT images,an image denoising algorithm combined with improved VGG network and deep dictionary is proposed to make up for the deficiency of deep dictionary denoising ability.After learning the first layer dictionary atom and sparse matrix in the deep dictionary,the dictionary atom is divided into an information atom and noise atom through the improved VGG network.The elements corresponding to the noise atom in the sparse matrix are then set to zero,to reduce the influence of the noise atom on image denoising.The experimental results show that compared with the K-SVD algorithm,the regularized K-SVD and deep dictionary learning algorithms,improve the peak signal-to-noise ratio and structural similarity index by 1.4 dB and 0.03 on average,which can effectively suppress the noise and artifacts of LDCT images while retaining more edge and detail information.
关 键 词:低剂量计算机断层扫描 K-奇异值分解算法 VGG网络 深层字典 图像去噪
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171