基于BP神经网络模型的大型体育赛事安保最优规模预测分析--以10届冬奥会为例  被引量:1

Prediction and Empirical Test of Optimal Security Scale of Large-Scale Events Based on BP Neural Network Model--Take the 10 Winter Olympic Games as an Example

在线阅读下载全文

作  者:梁媛 李钢[2] 李树旺 LIANG yuan;LI gang;LI Shuwang(Department of P.E.,Renmin University of China,Beijing 100872,China,Humanistic Olympic Studies Center,Renmin University of China,Beijing 100872,China;Beijing normal university,Beijing 100875,China)

机构地区:[1]中国人民大学体育部,中国人民大学人文北京(人文奥运)研究中心,北京100072 [2]北京师范大学,北京100875

出  处:《广州体育学院学报》2022年第1期120-128,共9页Journal of Guangzhou Sport University

基  金:国家社科基金重大项目(17ZDA328)。

摘  要:对于大型体育赛事主办城市而言,不仅需要建设完善的赛事设施,更需要保证赛事平稳安全地运行,赛事安保工作的优劣是评价赛事组织工作的关键因素。以冬奥会为例,研究采用BP神经网络模型法和灰色预测方法对1984—2018年10届冬奥会安保规模(安保人员数量、安保经费投入等变量)进行建模研究。研究结果表明:基于近十届冬奥会安保人员投入规模的真实值和预测值拟合结果良好,模型的权值和阈值在合理误差范围内较为精确。这一预测方法不仅能为大型赛事安保工作筹备提供规范性研究范式,而且对于实现经济办赛和安全办赛的双重目标提供实证性的借鉴和参考。For the host city of the large-scale events,it is not only necessary to build perfect event facilities,but also to ensure the smooth and safe operation of the event.The quality of event security is the key factor to evaluate the organization of the event.Take the Winter Olympics as an example,In this study,BP neural network model method and grey prediction method are used to model the security scale(variables such as the number of security personnel and security fund investment)of the 10th Winter Olympic Games from 1984 to 2018.The results show that the fitting results of the real value and predicted value of the security scale based on the recent ten Winter Olympic Games are good,and the weight and threshold of the model are more accurate within a reasonable error range.This prediction method can not only provide a normative research paradigm for the preparation of security work for large-scale events but also provide an empirical reference for realizing the dual objectives of economic and safe games.

关 键 词:大型体育赛事 安保 最优规模 BP神经网络模型 

分 类 号:G811.212[文化科学—体育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象