检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何彦[1] 肖圳 李育锋[1] 吴鹏程 刘德高 杜江 HE Yan;XIAO Zhen;LI Yufeng;WU Pengcheng;LIU Degao;DU Jiang(State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing,400030;Chongqing Yazaki Meter Co.,Ltd.,Chongqing,401123)
机构地区:[1]重庆大学机械传动国家重点实验室,重庆400030 [2]重庆矢崎仪表有限公司,重庆401123
出 处:《中国机械工程》2022年第7期825-833,共9页China Mechanical Engineering
基 金:重庆市技术创新与应用示范产业类重点研发项目(cstc2018jszx-cyzdX0147)。
摘 要:汽车组合仪表组装过程质检时间长、效率低,因此提出卷积神经网络与支持向量回归相结合的汽车组合仪表组装质量预测方法。结合仪表组装工艺,将卷积神经网络提取的生产数据特征作为支持向量回归的输入,对表征仪表质量的指针偏转角度做出预测。通过车间质检系统获取了仪表原始生产数据,对不同质检情况下的指针偏转角度进行了预测;结果表明所提方法预测误差较小,且具备较强的泛化能力,能够准确有效地预测汽车组合仪表的组装质量。Due to the long quality inspection time during assembly and lower production efficiency of automotive instrument clusters,an assembly quality prediction method for automotive instrument clusters using CNN-SVR was proposed.Combined with the assembly processes of instrument products,the production data features were extracted through CNN,which were used as the inputs of SVR to predict the pointer deflection angle that characterizesd the quality of instruments.The original production data of the instruments were obtained through the quality inspection systems of the assembly workshops,and the pointer deflection angles under different quality inspection conditions were predicted.The results indicate that proposed method has smaller prediction errors and strong generalization ability,which may accurately and effectively predict the assembly quality of automobile instrument clusters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33