检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴昕 刘双白 郝向中 王其 WU Xin;LIU Shuang-bai;HAO Xiang-zhong;WANG Qi(State Grid Jibei Electric Power Co.,Ltd.,Electric Power Research Institute(North China Electric Power Research Institute Co.,Ltd.),Beijing,China,100045)
机构地区:[1]国网冀北电力有限公司电力科学研究院(华北电力科学研究院有限责任公司),北京100045
出 处:《热能动力工程》2022年第3期72-80,共9页Journal of Engineering for Thermal Energy and Power
摘 要:以某350 MW供热机组高中压转子为研究对象,对K近邻法、随机梯度下降法、支持向量回归法和随机森林法等汽轮机高中压转子振动预测算法进行了可行性分析,并对机组首个供热期1,2号瓦轴振进行了预测。结果表明:K近邻算法、高斯径向基函数支持向量回归及随机森林算法可用于汽轮机高中压转子振动预测;在供热期振动预测中,K近邻算法易受目标参数大幅变化影响,导致预测结果偏差明显;特征参数越限极易引发支持向量回归算法精度偏差;随机森林算法具有最优的泛化能力,其在稳定工况振动预测中具有较高精度;预测结果揭示了该机组高中压转子振动水平在供热季期间不断恶化,1号瓦振幅增大20%,2号瓦振幅降低5%。Taking the HP-IP rotor of a certain 350 MW heating unit as the research object,the feasibility analyses of K-nearest neighbor,stochastic gradient descent,support vector regression and random forest algorithms for turbine HP-IP rotor vibration prediction were carried out,and the vibration prediction of No.1 and No.2 bearings during the first heating period of the unit was carried out by using the above algorithms.The results show that the K-nearest neighbor algorithm,Gaussian radial basis function support vector regression and random forest algorithm can be used to predict the vibration of turbine HP-IP rotor.In the vibration prediction of heating period,the K-nearest neighbor algorithm is susceptible to the large variation of target parameters,leading to obvious deviation of prediction results.Out-of-bounds characteristic parameters can easily lead to accuracy deviation of support vector regression algorithm.The stochastic forest algorithm has the optimal generalization ability and high precision in vibration prediction under stable conditions.The prediction results reveal that the vibration level of the HP-IP rotor of the unit deteriorates continually during the heating season,with the amplitude of No.1 bearing increasing by 20%and that of No.2 bearing decreasing by 5%.
关 键 词:汽轮机振动预测 K近邻 随机梯度下降 支持向量机 随机森林
分 类 号:TK261[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49