基于BP神经网络的I型金属夹芯板极限强度预测  被引量:2

Ultimate strength prediction of I-core sandwich plate based on BP neural network

在线阅读下载全文

作  者:卫钰汶 仲强 王德禹[1] WEI Yuwen;ZHONG Qiang;WANG Deyu(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

机构地区:[1]上海交通大学海洋工程国家重点实验室,上海200240

出  处:《中国舰船研究》2022年第2期125-134,共10页Chinese Journal of Ship Research

基  金:国家自然科学基金资助项目(51979163)。

摘  要:[目的]针对过去对I型金属夹芯板的极限强度评估不完善的问题,提出一种采用BP人工神经网络的方法来定量确定各相关参数对I型金属夹芯板极限强度的影响。[方法]首先,采用非线性有限元法研究I型金属夹芯板在面内轴向压缩载荷条件下的极限强度;然后,构造BP神经网络以对不同面板柔度系数β_(p)、腹板柔度系数β_(w)和梁柱柔度系数λ下I型金属夹芯板的极限强度进行预测;最后,提出采用人工神经网络权值和偏置法预测I型金属夹芯板极限强度的公式。[结果]针对所计算的算例尺寸,显示采用BP神经网络方法的极限强度预测的均方差MSE和相关系数R分别为0.001 2和0.981 8,所构建的神经网络模型具有较好的预测精度,最大误差不超过10%。[结论]所得结论可为I型金属夹芯板在船体结构中的应用提供参考。[Objectives] In view of the incomplete evaluation of the ultimate strength of I-core sandwich panels in the past, a BP artificial neural network method is proposed to quantitatively determine the influence of relevant parameters on the ultimate strength of I-core sandwich panels. [Methods]First, the ultimate strength of I-core sandwich panels under axial compression are investigated using the nonlinear finite element method. Second, a BP neural network is constructed to predict the ultimate strength of I-core sandwich panels with different plate slenderness ratios between longitudinal webs, plate slenderness ratios of webs and column slenderness ratio of one longitudinal web. Finally, a formula for predicting the ultimate strength of I-core sandwich panels using the artificial neural network weight and bias method is proposed. [Results]The mean square error MSE and correlation coefficient R of ultimate strength prediction using the BP neural network method are 0.001 2 and 0.981 8 respectively. The proposed neural network model has good prediction accuracy, and the maximum error is less than 10%. [Conclusions]This study can provide references for the application of I-core sandwich panels in hull structures.

关 键 词:I型金属夹芯板 BP人工神经网络 极限强度 非线性有限元法 预测 

分 类 号:U661.43[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象