基于AFC数据的地铁车站留乘概率分布估计  被引量:1

Delayed-Boarding Probability Distribution for Metro Stations Using Auto Fare Collection Data

在线阅读下载全文

作  者:陈欣 罗霞[1,2] 朱颖[3] 毛远思 CHEN Xin;LUO Xia;ZHU Ying;MAO Yuansi(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;National United Engi-neering Laboratory of Integrated and Intelligent Transportation,Southwest Jiaotong University,Chengdu 611756,China;China Railway Group Limited,Beijing 100039,China)

机构地区:[1]西南交通大学交通运输与物流学院,四川成都611756 [2]西南交通大学综合交通运输智能化国家地方联合工程实验室,四川成都611756 [3]中国中铁股份有限公司,北京100039

出  处:《西南交通大学学报》2022年第2期418-424,共7页Journal of Southwest Jiaotong University

基  金:四川省科技厅科技计划(2020YJ0255)。

摘  要:为研究地铁车站留乘特征,基于地铁自动售检票(auto fare collection,AFC)刷卡数据和运行图数据,研究了地铁车站留乘概率分布估计方法.首先,基于乘客进、出站刷卡时刻与列车到、发时刻的关系,构造了聚集时间最大值、疏解时间的概率分布函数,提出了基于截断样本的聚集、疏解时间分布估计方法;其次,通过研究乘客进、出站刷卡时间、聚集时间、疏解时间及留乘次数间的关系,提出了地铁车站留乘概率分布估计方法;最后,以某地铁区段为例,在估计了留乘程度不同、类型不同车站的聚集、疏解时间分布的基础上,估计了这些车站在平峰、高峰时段内的留乘概率分布.案例分析表明,在显著水平为5%的条件下,聚集、疏解时间分布估计结果可信;估计所得留乘概率分布与实地调查所得一致.To explore the characteristics of delayed boarding in metro stations,a probability distribution estimation method based on auto fare collection(AFC)data and operation timetable data is developed.Firstly,according to the relationship between passenger tap-in and tap-out time and train arrival and departure time,a probability distribution function of maximum access time and egress time is constructed,and an estimation method using the truncated sample is developed to estimate the access and egress time distribution.Secondly,an estimation method of the delayed-boarding probability distribution is constructed by analyzing the relationship among passenger tap-in and tap-out time,access and egress time and the number of delayed-boarding times.Finally,with some metro sections as a real case study,for different levels and types of stations,the access and egress time distribution and the delayed-boarding probability are estimated.The results of the case study show that the access and egress time distributions follow the estimated distributions at a 5%significant level,and the estimated delayed-boarding probability distribution is consistent with the practical results.

关 键 词:城市轨道交通 留乘 极大似然估计 自动售检票数据 

分 类 号:U293.2[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象