非接触式UWB传感的生命体征检测分析  被引量:1

Detection and Analysis of Vital Signs with Non-contact UWB Sensor

在线阅读下载全文

作  者:陈华颖 张珣[1] CHEN Hua-ying;ZHANG Xun(Institute of Modern Circuits and Intelligent Information,Hangzhou Dianzi University,Hangzhou 310018,China)

机构地区:[1]杭州电子科技大学现代电路与智能信息研究所,浙江杭州310018

出  处:《软件导刊》2022年第4期19-24,共6页Software Guide

摘  要:为解决心跳信号易被呼吸谐波和其他噪声干扰而难以提取的问题,提出一种结合遗传算法(GA)和反向传播(BP)神经网络的聚类经验模态分解体征提取模型。首先,采用动目标检测法滤除超宽带(UWB)雷达所接收回波信号中的静止杂波;然后利用距离门选择方法提取出体表振动信号,对其进行聚类经验模态分解得到固有模态函数分量;最后通过GA-BP神经网络对固有模态函数分量转化后的特征向量进行权值训练,以贝叶斯正则化作为BP的训练函数重构心肺信号,并与原始聚类经验模态分解重构信号进行比较。仿真实验结果表明,在不同信噪比下,GA-BP神经网络提取的信号与实际结果吻合度更高,可有效提高呼吸与心跳信号的提取准确度。In order to solve the problem that heartbeat signal is easy to be disturbed by respiratory harmonics and other noise,a clustering en⁃semble empirical mode decomposition(EEMD)sign extraction model combining genetic algorithm(GA)and back propagation(BP)neural network is proposed.Firstly,moving targets detection(MTD)is used to filter the static clutter from the echo signal received by ultra wide band(UWB)radar;Secondly,the body surface vibration signal is extracted by the distance gate selection method,and the intrinsic mode functions component is obtained by EEMD decomposition of the body surface vibration signal;Finally,the weight of the feature vector transformed by in⁃trinsic mode functions component is trained by GA-BP neural network,and Bayesian regularization is used as the training function of BP to re⁃construct the cardiopulmonary signal,which is compared with the original EEMD reconstructed signal.The simulation results show that under different signal-to-noise ratios,signals extracted by GA-BP neural network has higher consistency with the actual results,and can effectively improve the extraction accuracy of respiratory and heartbeat signals.

关 键 词:超宽带雷达 聚类经验模态分解 GA-BP神经网络 贝叶斯正则化 信号处理 

分 类 号:TP212.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象