检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wanwei Liu Junnan Xu David N.Jansen Andrea Turrini Lijun Zhang
机构地区:[1]College of Computer Science,National University of Defense Technology,Changsha 410073,China [2]State Key Laboratory of Computer Science,Institute of Software,Chinese Academy of Sciences,Beijing 100190,China [3]University of Chinese Academy of Sciences,Beijing 100039,China [4]Institute of Intelligent Software,Guangzhou 511458,China
出 处:《Tsinghua Science and Technology》2022年第2期372-385,共14页清华大学学报(自然科学版(英文版)
基 金:supported by the National Science Foundation of China(No.61872371);the National Science Foundation of China(Nos.61761136011 and 61836005);the Open Fund from the State Key Laboratory of High Performance Computing of China(HPCL)(No.2020001-07);the National Key Research and Development Program of China(No.2018YFB0204301);supported by the Guangdong Science and Technology(No.2018B010107004)。
摘 要:Mu-calculus(a.k.a.μTL)is built up from modal/dynamic logic via adding the least fixpoint operatorμ.This type of logic has attracted increasing attention since Kozen’s seminal work.PμTL is a succinct probabilistic extension of the standardμTL obtained by making the modal operators probabilistic.Properties of this logic,such as expressiveness and satisfiability decision,have been studied elsewhere.We consider another important problem:the axiomatization of that logic.By extending the approaches of Kozen and Walukiewicz,we present an axiom system for PμTL.In addition,we show that the axiom system is complete for aconjunctive formulas.
关 键 词:PμTL axiom system aconjunctive formula tableau approach
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249