基于相关分析和神经网络的激光焊接稳态识别  被引量:5

Laser welding steady status recognition method based on correlation analysis and neural network

在线阅读下载全文

作  者:黄威威[1] 游德勇[1] 高向东[1] 张艳喜[1] 黄宇辉 HUANG Weiwei;YOU Deyong;GAO Xiangdong;ZHANG Yanxi;HUANG Yuhui(Guangdong Provincial Welding Engineering Technology Research Center, Guangdong University of Technology, Guangzhou 510006, China)

机构地区:[1]广东工业大学广东省焊接工程技术研究中心,广州510006

出  处:《激光技术》2022年第3期312-319,共8页Laser Technology

基  金:国家自然科学基金资助项目(51805090);广州市科技计划资助项目(202002020068)。

摘  要:为了准确识别激光焊接的稳态类型,采用了图像处理、相关分析和神经网络的方法,增加对准稳态的研究,以信号特征的相关系数作为神经网络模型的输入,进行了理论分析和实验验证,得出了光学、视觉信号的相关性对激光焊接稳态类型的影响规律。结果表明,匙孔面积和金属蒸汽面积的相关性区分稳态类型的效果最好,其相关系数为0.2~0.3时为稳态,0.4~0.5时为准稳态,0.6~0.7时为非稳态;训练完成的神经网络模型在测试集上达到了98.76%的预测准确率,可满足准确识别焊缝稳态类型的需求。该研究为自动化生产中预防出现激光焊接缺陷提供了参考。In order to accurately identify the type of weld seam status in laser welding,image processing,correlation analysis,and neural network methods were used.The study of quasi-steady status was added,and the correlation coefficients of the signal features were used as the input of the neural network model.Theoretical analysis and experimental verification were carried out,and the effects of the correlation of optical and visual signals on the steady-status types of laser welding were obtained.The results show that the correlation between keyhole area and plume area is the best way to distinguish the steady-status types.When its correlation coefficient is 0.2~0.3,it is in steady status,0.4~0.5 corresponds to the quasi-steady status,and 0.6~0.7 corresponds to the unsteady status.The trained neural network model achieves 98.76%prediction accuracy on the test set,which can meet the needs of accurately identifying types of weld seam status.This research provides a reference for preventing laser welding defects in automated production.

关 键 词:激光技术 稳态识别 相关分析 神经网络 图像处理 

分 类 号:TG456.7[金属学及工艺—焊接]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象