检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏铖磊 南新元[1] 李成荣[2] 罗杨宇[2] WEI Chenglei;NAN Xinyuan;LI Chengrong;LUO Yangyu(College of Electrical Engineering,Xinjiang University,Urumqi 830047,China;Intelligent Manufacturing Technology and System Research Center,Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
机构地区:[1]新疆大学电气工程学院,乌鲁木齐830047 [2]中国科学院自动化研究所智能制造技术与系统研究中心,北京100190
出 处:《环境工程》2022年第1期175-183,共9页Environmental Engineering
摘 要:生活垃圾种类繁杂,传统垃圾分选工艺的效率及精确度较低,为提高多尺度、不同材质垃圾的检测精度,同时保证垃圾分类的鲁棒性,基于现有深度卷积神经网络和单阶段目标检测算法YOLOv3,提出具有多尺度感受视野注意力机制的ECA_ERFB_s-YOLOv3算法。首先在算法检测器前引入多尺度感受视野模块,使算法能选择合适的感受视野对不同尺度垃圾物体进行匹配,提高了检测精度;然后,使用ResNet50替换原骨架网络Darknet53,在迁移学习条件下,使用高效注意力机制对ResNet50和多尺度感受视野模块中的特征进行自主增强和抑制,提高了算法的鲁棒性。最后,使用K-means算法对锚框进行回归,并设计了锚框的分配方式。消融实验结果表明:ECA_ERFB_s-YOLOv3精度更高,鲁棒性更好;在检测密集堆放的生活垃圾时,算法能较好地满足任务需要,表现出更好的检测效果。In order to improve the detection accuracy of multi-scale and different materials and ensure the robustness of waste classification, based on the existing deep convolution neural network and single-stage target detection algorithm YOLOv3, an ECA with multi-scale perception visual field attention mechanism was proposed as ECA_ ERFB_ S-YOLOv3 algorithm. The multi-scale perceptual field module was introduced in front of the algorithm detector, so that the algorithm could select the appropriate perceptual field to match the garbage objects with different scales, and the detection accuracy was improved;then, ResNet50 was used to replace the original skeleton network Darknet53. Under the condition of transfer learning, efficient attention mechanism was used to autonomously enhance and suppress the features in ResNet50 and multi-scale sensory visual field module, which improved the robustness of the algorithm. Finally, K-means algorithm was used to regress the anchor box, and the allocation method of anchor box was designed. The results of ablation experiment showed that ECA_ ERFB_ S-YOLOV3 had higher precision and better robustness;when detecting densely stacked domestic waste, the algorithm could better meet the needs of the task and show better detection effect.
分 类 号:X799.3[环境科学与工程—环境工程] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.19.32