基于深度学习的自动调制识别研究  被引量:8

Automatic Modulation Recognition Based on Deep Learning

在线阅读下载全文

作  者:焦翔 魏祥麟 薛羽[1] 王超 段强 JIAO Xiang;WEI Xiang-lin;XUE Yu;WANG Chao;DUAN Qiang(School of Computer and Software,Nanjing University of Information Science and Technology,Nanjing 210044,China;The 63rd Research Institute,National University of Defense Technology,Nanjing 210007,China)

机构地区:[1]南京信息工程大学计算机与软件学院,南京210044 [2]国防科技大学第六十三研究所,南京210007

出  处:《计算机科学》2022年第5期266-278,共13页Computer Science

摘  要:非合作通信场景下,自动调制识别是实现频谱感知、频谱管理、频谱利用的关键一环,也是进行高效信号处理的重要前提。传统基于模式识别的AMR方法需要手工进行特征提取,面临着设计复杂性高、识别精度低、泛化能力弱等难题。为此,学术界将目光转向以提取数据中隐含特征见长的深度学习方法,提出了多种面向AMR的深度神经网络架构。相比传统方法,ADNN取得了更高的识别精度,且泛化能力更强,适用范围更广。文中对ADNN领域的研究进行了全面的梳理总结,使从业者可以更好地了解该领域的研究现状,明晰该领域存在的问题以及未来的发展方向。首先,介绍了ADNN设计中涉及的典型DL方法;其次,描述了AMR问题的内涵,简述了传统解决方案;然后,详细介绍了ADNN的工作流程、方法分类和各类方法中的典型代表;最后,在公开数据集上对代表性方案进行了实验对比,并指出了该领域未来需要重点研究的几个方向。Automatic modulation recognition(AMR)is critical to realize efficient spectrum sensing,spectrum management and spectrum utilization in non-cooperative communication scenarios.It is also an important prerequisite for efficient signal proces-sing.Traditional AMR methods based on pattern recognition need to extract features manually,which faces many problems such as high design complexity,low recognition accuracy and weak generalization ability.Therefore,practitioners turn to deep learning(DL)methods,which are good at extracting hidden features from the data,and propose a number of AMR-oriented deep neural network(ADNN)architectures.Compared with traditional methods,ADNN has achieved higher recognition accuracy,higher generalization ability and wider application range.This paper provides a comprehensive survey of ADNN to help practitioners understand the current research status in this field,and analyzes the future directions after pinpointing several open issues.Firstly,typical deep learning methods involved in ADNN design are introduced.Secondly,a few traditional AMR methods are briefly described.Thirdly,typical ADNNs are introduced in detail.Finally,a series of experiments are conducted on an open dataset to compare typical proposals,and several key research directions in this field are put forward.

关 键 词:深度学习 深度神经网络 自动调制识别 安全 

分 类 号:TN971[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象