检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭渝 李小林 TAN Yu;LI Xiaolin(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China)
出 处:《重庆师范大学学报(自然科学版)》2022年第2期84-88,共5页Journal of Chongqing Normal University:Natural Science
基 金:国家自然科学基金(No.11971085);重庆市高校创新研究群体(No.CXQT19018);重庆市教育委员会科学技术研究重大项目(No.KJZD-M201800501)。
摘 要:【目的】利用适定移动最小二乘近似和预测校正迭代算法等技术,建立数值分析Gilson-Pickering方程的移动最小二乘近似无网格方法。【方法】首先采用差分格式离散时间导数,然后利用适定移动最小二乘近似离散空间导数,最后使用配点技术得到了非线性代数方程组。【结果】数值算例表明该方法能有效地求解具有三阶偏导数且依赖于时间变量的非线性Gilson-Pickering方程。【结论】该方法比有限元方法的精度更高。[Purposes]Using the well-posed moving least squares approximation and the predictor-corrector iterative algorithm, a meshless method is established for numerical analysis of the Gilson-Pickering equation using moving least squares approximation. [Methods] The difference formulas are used to discretize the time derivatives, the well-defined moving least squares approximation is used to discrete the space derivatives, and finally the collocation technique is used to obtain the nonlinear algebraic equations. [Findings] Numerical examples show that the method can effectively solve the nonlinear Gilson-Pickering equation with third-order partial derivatives and time-dependent variables. [Conclusions] This method is more accurate than the finite element method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.207.23