检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢梦园 蔡政英[1] LU Mengyuan;CAI Zhengying(College of Computer and Information Technology,China Three Gorges University,Yichang 443002,China)
机构地区:[1]三峡大学计算机与信息学院,湖北宜昌443002
出 处:《长江信息通信》2022年第3期71-74,共4页Changjiang Information & Communications
摘 要:图像边缘检测涉及很多复杂的因素,是一个难以解决的问题,因此提出了一种黏菌群算法来提高图像边缘检测准确性。首先,在像素灰度和边缘提取的基础上建立待检测图像的能量模型,其次,模拟黏菌群的合作行为设计出一种黏菌群算法,解释其交叉学习机制,最后通过实验提取主要边缘并减少其他边缘,比较结果表明,与其他人工智能算法相比,该方法可以有效解决图像边缘检测的精度问题。Image edge detection involves many complex factors and is a difficult problem to solve,so a slime microbiota algorithm is proposed to improve the accuracy of image edge detection.Firstly,on the basis of pixel grayscale and edge extraction,the energy model of the image to be detected is established,secondly,a slime microbial algorithm is designed to simulate the cooperative behavior of the slime microflora,which explains its cross-learning mechanism,and finally the main edges are extracted and other edges are reduced through experiments,and the comparison results show that compared with other artificial intelligence algorithms,this method can effectively solve the accuracy problem of image edge detection..
关 键 词:图像边缘检测 边缘提取 群体学习 粘菌 人工智能算法
分 类 号:TP311.1[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7