检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李天宇 吴浩 毛艳玲 陈明举 石柱 LI Tianyu;WU Hao;MAO Yanling;CHEN Mingju;SHI Zhu(Key Laboratory of Artificial Intelligence in Sichuan Province,Sichuan University of Science & Engineering,Yibin 644005,China;School of Automation and Information Engineering,Sichuan University of Science & Engineering,Yibin 644005,China)
机构地区:[1]四川轻化工大学人工智能四川省重点实验室,四川宜宾644005 [2]四川轻化工大学自动化与信息工程学院,四川宜宾644005
出 处:《无线电工程》2022年第5期799-806,共8页Radio Engineering
基 金:四川省科技厅项目(2020YFG0178);人工智能四川省重点实验室项目(2019RYY01);企业信息化与物联网测控技术四川省高校重点实验室项目(2018WZY01,2019WZY02,2020WZY02);自贡市科技局项目(2019YYJC13,2019YYJC02,2020YGJC16)。
摘 要:为了提高CycleGAN对低照度图像增强后的细节分辨能力,提高图像整体的视觉质量,提出了一种改进CycleGAN的低照度图像增强算法。该网络的生成器由低光照增强模块和亮度均衡处理模块组成,用以学习低照度图像到正常照度图像的特征映射。以多尺度卷积和残差空洞卷积构建基于U-Net的低光照增强模块,提高网络对增强后图像细节信息的恢复能力;以全卷积构建亮度均衡处理模块,使图像亮度分布均匀并且提高图像视觉质量;以Patch-GAN作为网络的判别器,利用映射为一个N×N的矩阵来提高判别器对细节信息的分辨能力,并且增强网络收敛能力。验证结果表明,相较于其他对比方法,所提算法增强后的图像拥有更好的主观视觉效果和图像细节,同时在客观指标上的结果也优于其他方法。In order to improve CycleGAN’s capability to distinguish the details of enhanced low-light images and improve the overall visual quality of image,a low-light image enhancement algorithm to improve CycleGAN is proposed.The generator of the network is composed of a low-light enhancement module and a brightness equalization processing module to learn the feature mapping from low-light images to normal-light images.Among them,multi-scale convolution and residual hollow convolution are used to build a U-Net-based low-light enhancement module in order to improve the network’s capability to restore the enhanced image detail information;and a brightness equalization processing module is built with full convolution to make the image brightness distribute uniformly and improve image visual quality.At the same time,Patch-GAN is used as the discriminator of the network,and an mapping N×N matrix is used to improve the discriminator’s capability to distinguish detailed information and enhance network convergence capability.Verification results show that as compared with other comparison methods,the image enhanced by the proposed algorithm has better subjective visual effects and image details,and the results on objective indicators are also better than other methods.
关 键 词:低照度图像 多尺度卷积 残差空洞卷积 亮度均衡处理模块 Patch-GAN
分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7