基于EfficientDet的输电线路破损防振锤检测  被引量:3

EfficientDet-based detection of damaged vibration damper in transmission line

在线阅读下载全文

作  者:许扬 凌德泉 严锋 陈晓建 张一辰 籍天明 XU Yang;LING Dequan;YAN Feng;CHEN Xiaojian;ZHANG Yichen;JI Tianming(State Grid Nantong Power Supply Company,Nantong 226000,China;Nanjing Saturn Technology Co.,Ltd.,Nanjing 210019,China)

机构地区:[1]国网南通供电公司,江苏南通226000 [2]南京土星视界科技有限公司,江苏南京210019

出  处:《电子设计工程》2022年第9期139-143,共5页Electronic Design Engineering

基  金:国家自然科学基金(51577028)。

摘  要:随着人工智能尤其是深度学习技术的快速发展,无人机巡检与图像识别技术在电网输电线路破损防振锤检测中发挥着重要作用。文中构建了一种基于改进EfficientDet深度神经网络模型的破损防振锤检测模型。采用先目标检测后分类判别的方法实现输电线路中的破损防振锤识别,基于目标各要素之间的相互关系判别技术,优化了背景干扰所产生的误识别问题。使用细节特征提取来判断拍摄倾角并去除倾斜角度过大的目标。实验结果表明,文中所提改进EfficientDet目标检测模型的mAP为51.16%,准确率与召回率分别为93.3%、91.8%,均优于其他目标检测模型。同时,破损防振锤的分类准确率与召回率分别达到85.4%、81.7%,由此验证了所提方法的准确性与实用性。With the rapid development of artificial intelligence,especially deep learning technology,UAV inspection and image recognition technology play an increasingly important role in the detection of transmission line damaged damper.In this paper,a two-step detection model of damaged damper based on improved EfficientDet depth neural network model is constructed.The method of target detection before classification is used to identify the damaged damper in the transmission line.Based on the relationship between the target elements,the problem of false identification caused by background interference is optimized.The method of using detail feature extraction to determine the shooting inclination angle is used to remove the target with too large inclination angle.The experimental results show that the mAP of the improved EfficientDet target detection model is 51.16%,the accuracy and recall are 93.3% and 91.8%respectively,which is better than other target detection models.At the same time,the classification accuracy and recall rate of damaged damper are 85.4% and 81.7% respectively,which verify the accuracy and practicability of the proposed method.

关 键 词:防振锤 EfficientDet 深度神经网络 目标检测 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TM755[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象