检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋刚 许晓东[1] SONG Gang;XU Xiaodong(School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212000)
机构地区:[1]江苏大学计算机科学与通信工程学院,镇江212000
出 处:《计算机与数字工程》2022年第4期849-854,共6页Computer & Digital Engineering
摘 要:为解决当前DKT模型忽略学生实际答题时间带来的个体化差异问题,通过融入学生每个技能前后两次的答题时间,对学生技能学习的时间进行动态分组。同时,引入与原始DKT模型的损失函数相对应的重构正则化项,寻找学生答题时间个体化差异带来影响的最优解。在ASSISTments和Cognitive Tutor数据集上的对比实验证实AUC最高提升了10%的收益。In order to solve the problem of individual differences caused by the current deep knowledge tracing(DKT)model ignoring students’actual answering time,the students’skills learning time is dynamically grouped by integrating the students’answering time before and after each skill.At the same time,the reconstruction regularization term corresponding to the loss function of the original DKT model is introduced to find the optimal solution that is affected by the individual differences in student answer time.Comparative experiments on the ASSISTments and Cognitive Tutor datasets confirm that the AUC improves the revenue by up to 10%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222