检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:纪冲[1] 王琛[1] JI Chong;WANG Chen(Inner Mongolia Agricultural University College of Computer and Information,Inner Mongolia Hohhot 010018,China)
机构地区:[1]内蒙古农业大学计算机与信息工程学院,内蒙古呼和浩特010018
出 处:《计算机仿真》2022年第2期414-418,共5页Computer Simulation
基 金:内蒙古自治区高等学校科学研究科研项目(NJZZ20039)。
摘 要:针对现有图像序列弱小目标识别存在图像特征学习不全面、训练样本较大,导致对相似物体识别率及准确率较低的问题,提出基于多模态深度学习的图像序列弱小目标识别。利用弱小目标与背景之间的相关性对单帧图像进行背景抑制,得到目标和高频噪声,对图像做目标分割处理,剔除高频噪声。在此基础上,使用加入稀疏性约束的自编码器不断调节其自身参数,压缩输入信息,提取有用的输入特征,训练出最佳唯一向量,使用优化的CNN深度学习模型完成弱小目标识别。实验结果表明,所提方法能够在不依赖大量识别训练的情况下,始终保持较高的识别率,最大识别率为99.21%,优于传统方法。Traditional image sequence weak small target recognition has defects, such as incomplete image feature learning and large training samples, thus leading to the problem of low recognition rate and accuracy for similar objects. Therefore, an image sequence weak and small target recognition based on multi-modal deep learning was proposed in this work. The background of a single frame image was constrained by using the correlation between the weak and small target and the background. Then, the target and high-frequency noise were obtained, and the image was segmented to remove the high-frequency noise. Then, the self-encoder with sparsity constraint was used to adjust its parameters. The useful input features were extracted by compressing the input information. The useful input features were extracted to train the best unique vector, thus achieving the small target recognition. The results show that this method is superior to the traditional methods, and has a high recognition rate. The maximum recognition rate is up to 99.21%.
关 键 词:弱小目标 单帧图像背景抑制 目标分割 稀疏自编码器 深度学习模型
分 类 号:TP398.21[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195