一种维持Saint-Venant方程组移动稳态解的中心格式  被引量:2

Moving-Water Equilibria Preserving Central Scheme for the Saint-Venant System

在线阅读下载全文

作  者:罗一鸣 李订芳[1] 刘敏[1] 董建 Luo Yiming;Li Dingfang;Liu Min;Dong Jian(School of Mathematics and Statistics,Wuhan University,Wuhan 430072;College of Liberal Arts and Sciences,National University of Defense Technology,Changsha 410073)

机构地区:[1]武汉大学数学与统计学院,武汉430072 [2]国防科技大学文理学院,长沙410073

出  处:《数学物理学报(A辑)》2022年第3期891-903,共13页Acta Mathematica Scientia

基  金:国家重点研发计划项目(2017YFC0405901)~~。

摘  要:针对S aint-Venant方程组提出了一种具有二阶精度的非交错中心有限体积格式.相较于经典中心格式为维持静稳态解选择重构守恒变量和水位值,但在求解移动稳态问题时会产生巨大误差,格式通过重构守恒变量和能量值,以及一种新的源项离散方法能够精确维持移动稳态解并捕捉其小扰动.最后,通过一些经典数值算例验证了格式的收敛性,谐性以及稳健性.In this paper,we propose a second-order unstaggered central finite volume scheme for the Saint-Venant system.Classical central scheme can preserve still-water steady state solution by reconstructing conservative variables and the water level,but generates enormous numerical oscillation when considering moving-water steady state.We choose to reconstruct conservative variables and the energy,and design a new discretization of the source term to preserve moving-water equilibria and capture its small perturbations.In the end,several classical numerical experiments are performed to verify the proposed scheme which is convergent,well-balanced and robust.

关 键 词:Saint-Venant方程组 非交错中心格式 移动稳态 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象