检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余琼芳[1,2] 徐静 杨艺 YU Qiongfang;XU Jing;YANG Yi(School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo Henan 454003,China;Postdoctoral Programme of Beijing Research Institute,Dalian University of Technology,Beijing 100000,China)
机构地区:[1]河南理工大学电气工程与自动化学院,河南焦作454003 [2]大连理工大学北京研究院博士后科研工作站,北京100000
出 处:《中国安全生产科学技术》2022年第4期204-210,共7页Journal of Safety Science and Technology
基 金:国家自然科学基金项目(61601172)。
摘 要:在低压交流配电系统中,当多支路并联的复杂系统的某1支路中出现串联电弧故障时,识别难度大幅提升。为了预防此类情况引发的电气火灾,提出1种卷积神经网络(CNN)与长短时记忆网络(LSTM)结合的串联故障电弧检测方法。首先,搭建实验平台用以采集不同负载在不同支路下发生故障时和正常工作时的干路电流数据;然后,构建CNN_LSTM模型并做出相应改进,将电流数据直接输入到模型中,由模型自主提取波形特征并进行分类。研究结果表明:该方法可以快速、准确地识别出电弧故障,准确率达99.04%以上,且能够较为准确地检测出是哪类负载所在的支路发生电弧故障,准确率达97.90%,可为复杂支路下的电弧故障识别研究提供参考。In the low voltage AC distribution system,the difficulty of identification is greatly increased when the series arc fault occurs in one branch of the complex system with multiple branches in parallel.To prevent the electrical fires caused by such conditions,a detection method of series fault arc combining with the convolutional neural network(CNN)and long short-time memory network(LSTM)was proposed.Firstly,an experimental platform was built to collect the data of the trunk circuit current of different loads under different branches at fault and normal operation.Then the CNN_LSTM model was built and improved accordingly.The current data was directly input into the model,and the waveform features were extracted and classified by the model independently.The results showed that this method could quickly and accurately identify the arc faults,and the accuracy reached more than 99.04%.Moreover,it could more accurately detect the branch where the arc fault occurred with which kind of load,with the accuracy of 97.90%.It provides reference for the research of arc fault identification under complex branches.
关 键 词:低压交流系统 串联故障电弧 复杂支路 支路故障 卷积神经网络 长短时记忆网络
分 类 号:X934[环境科学与工程—安全科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117