检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘鑫 梅红岩[1] 王嘉豪 李晓会[1] LIU Xin;MEI Hongyan;WANG Jiahao;LI Xiaohui(College of Electronic and Information Engineering,Liaoning University of Technology,Jinzhou,Liaoning 121001,China)
机构地区:[1]辽宁工业大学电子与信息工程学院,辽宁锦州121001
出 处:《计算机工程与应用》2022年第10期41-49,共9页Computer Engineering and Applications
基 金:国家自然科学基金青年基金项目(61802161);辽宁省自然科学基金(20180550886)。
摘 要:图神经网络因其特性在许多应用领域展露锋芒,将图神经网络与推荐相结合成为研究热点之一。在推荐中使用图神经网络方法,能够在复杂环境中显著提高推荐的水平。对图神经网络的方法、个性化推荐和群组推荐分别进行总结介绍;对基于图神经网络的推荐方法进行概述,重点对图神经网络及其近年来在推荐领域的研究成果进行归纳总结;分析了推荐研究现状和阻碍其进一步发展的困难,并根据图神经网络的优势对图神经网络与群组推荐结合进行了可行性分析及展望。Graph neural network has a good application effect in many application fields because of its characteristics, the combination of graph neural network and recommendation has become one of the research hot spots. Using graph neural network in recommendation can significantly improve the level of recommendation in complex environment. In this paper,the graph neural network method, personalized recommendation and group recommendation are introduced respectively.The recommendation methods based on graph neural network are summarized, focusing on graph neural network and its recent research achievements in the field of recommendation. The recommendation research status and the difficulties in further development are analyzed. According to the advantages of graph neural network, the feasibility of combining graph neural network with group recommendation is analyzed and prospected.
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249