基于深度学习的井下信号调制识别研究  被引量:3

Research on Coal Mine Wireless Signal Modulation Recognition Based on Deep Learning

在线阅读下载全文

作  者:王安义[1] 王煜仪 李立 WANG Anyi;WANG Yuyi;LI Li(College of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)

机构地区:[1]西安科技大学通信与信息工程学院,西安710054

出  处:《煤炭技术》2022年第4期112-115,共4页Coal Technology

摘  要:为识别矿井Nakagami-m衰落信道下的无线信号调制方式,研究了基于深度学习的端到端调制识别方法。首先对接收端IQ信号提取实部和虚部数据作为数据集,并搭建组合深度神经网络模型(CLDNN)对11种井下无线信号进行识别。仿真结果表明,当信噪比(SNR)为0时,平均正确识别率为75.3%,当SNR为5 dB以上时,平均正确识别率可达到92.4%以上,相比于经典的深度学习调制识别方法,所提出的端到端深度神经网络模型可以更准确识别矿井无线信号。In order to identify the modulation mode of wireless signal in Nakagami-m fading channel,an end-to-end modulation recognition method based on deep learning is studied.Firstly,the real part and imaginary part data are extracted from the IQ signal at the receiving end as the data set,and build a combined deep neural network model(CLDNN) to identify 11 types of underground wireless signals.The simulation results show that when the signal-to-noise ratio(SNR) is 0,the average correct recognition rate is 75.3%,and when the SNR is more than 5 dB,the average correct recognition rate can reach more than 92.4%.Compared with the classical deep learning modulation recognition method,the proposed end-to-end deep neural network model can identify mine wireless signals more accurately.

关 键 词:调制识别 NAKAGAMI-M衰落信道 深度学习 深度神经网络 

分 类 号:TN911.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象