检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴滋坤 张俊勃 黄钦雄 胡嘉铭 WU Zikun;ZHANG Junbo;HUANG Qinxiong;HU Jiaming(School of Electric Power Engineering,South China University of Technology,Guangzhou 510640,Guangdong Province,China)
机构地区:[1]华南理工大学电力学院,广东省广州市510640
出 处:《中国电机工程学报》2022年第8期2864-2872,共9页Proceedings of the CSEE
基 金:广东省自然科学杰出青年基金项目(2018B030306041);广州市应用基础研究计划项目(202102020413);中央高校基础研究基金项目(2019SJ01)。
摘 要:基于隐式梯形积分的交替求解法由于数值稳定性好,计算简单,广泛应用于电力系统暂态稳定计算,但其收敛性与计算效率之间存在权衡问题。该文分析交替求解法的迭代收敛过程,提出基于雅可比迭代的交替求解算法。该算法在求解非线性代数方程组时引入雅可比矩阵,提高算法迭代收敛性;利用非诚实牛顿法(very dishonest Newton method,VDHN)更新雅可比矩阵,减少计算复杂度。同时,该算法在求解线性代数方程组时,采用雅可比迭代法,提高计算效率。基于IEEE标准16机68节点系统,对比分析原始交替求解法、改进交替求解法、VDHN直接法和所提方法的正确性、迭代收敛过程及计算效率,证明所提方法的优越性。Alternating solution method based on implicit trapezoidal integration is widely used in transient stability calculation due to its numerical stability and computational simplicity. However, there is a trade-off between its convergence performance and computational efficiency. In this paper, the convergence process of the traditional method was analyzed;a novel method was proposed based on Jacobian iteration for transient stability calculation, which can obtain better convergence performance by introducing Jacobian matrix, and reduce the computational burden by adopting very dishonest Newton method(VDHN). Furthermore, the proposed method can improve the computational efficiency by solving the linear algebraic equations with Jacobian iteration. Based on the IEEE standard 16-generator 68-bus system, the simulation validation, convergence process, and computational efficiency were analyzed and compared with the traditional method,modified method, and the direct VDHN method. The calculation results demonstrate the superiority of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.215.45