检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:葛强[1,3] 沈文举 李冉 李莘莘 蔡坤[1,3] 左宪禹[2,3] 乔保军[1,3] 张云舟 Ge Qiang;Shen Wenju;Li Ran;Li Shenshen;Cai Kun;Zuo Xianyu;Qiao Baojun;Zhang Yunzhou(Henan Key Laboratory of Big Data Analysis and Processing,Kaifeng 475004,China;Henan Engineering Laboratory of Spatial Information Processing,Kaifeng 475004,China;School of Computer and Information Engineering,Henan University,Kaifeng 475004,China;Earth Observation System and Data Center,CNSA,Department of Achievement Transformation,Beijing 100101,China;State Key Laboratory of Remote Sensing Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100101,China;State Administration of Cultural Heritage of China,Beijing 100010,China)
机构地区:[1]河南大学河南省大数据分析与处理重点实验室,河南开封475004 [2]河南大学河南省空间信息处理工程实验室,河南开封475004 [3]河南大学计算机与信息工程学院,河南开封475004 [4]国家航天局对地观测与数据中心成果转化部,北京100101 [5]中国科学院空天信息创新研究院,遥感科学国家重点实验室,北京100101 [6]国家文物局,北京100010
出 处:《遥感技术与应用》2022年第1期73-84,共12页Remote Sensing Technology and Application
基 金:国家自然科学基金项目(U1704122、U1804154)。
摘 要:基于2001~2018年MODIS标准产品,研究了我国及七大区域热异常点的时空分布特征。结果表明:空间分布上,热异常点主要分布在除西北、西南之外的大部分地区;年际趋势上,2001~2014年间热异常点数量持续上升,年均增长率为15.01%,2015年后逐年下降,年均下降率为14.96%。月季尺度上,热异常点在春、秋季节出现最为频繁(春:551716个,秋:416698个),春、秋季相对在东北地区分布最多(春:164898个,秋:186727个),东北地区月均数量10月最高(118274个);夏季热异常点数量最低(290793个),多分布于华东地区(120455个),华东地区月均数量6月最高(76465个);冬季数量为358483个,且在华南地区分布最多(108209个),华南地区月均数量1月最高(37770个)。研究有助于掌握我国典型区域的森林、草原火灾,以及由于秸秆焚烧、工业排放等引起热异常的变化情况,进而为区域灾害防治和环境监测提供技术支撑。In recent years,environmental pollution problems caused by straw burning and industrial emissions have become more serious.The use of satellite thermal abnormal products to analyze the temporal and spatial distribution of thermal abnormalities plays an important role in environmental monitoring.Based on MODIS standard products from 2001 to 2018,the temporal and spatial distribution characteristics of thermal anomalies in China and seven major regions are studied.The results showed that:in terms of spatial distribution,thermal anomalies are mainly distributed in most areas except Northwest and East China.In terms of inter-annual trends,the number of thermal anomalies continued to increase from 2001 to 2014 years,with an average annual growth rate of 15.01%,2015 years After that,it decreased year by year,with an average annual decline rate of 14.96%.On month and season scales,thermal anomalies occur most frequently in spring and autumn(spring:551716,autumn:416698),Spring and autumn are relatively most distributed in Northeast China(spring:164898,autumn:186727).The highest in October(118274);the lowest number of hot anomalies in summer(290793),mostly distributed in East China(120455),the average monthly number in East China is the highest in June(76465);the number in winter is 358483,South China has the most distribution(108209),and South China has the highest monthly average number in January(37770).This research is helpful to master forest and grassland fires in typical regions of China,as well as changes in thermal abnormalities caused by straw burning and industrial emissions,and then provide technical support for regional disaster prevention and environmental monitoring.
分 类 号:X87[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222